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SECTION I

INTRODUCTION

This report, in essence, is a continuation of Ref. 1. In this

reference, the concept of dynamic stability for suddenly loaded systems

was discussed in detail, including criteria and estimates, on the basis

of the energy approach. Moreover, they were demonstrated through simple

mechanical models, with finite-degrees-of-freedom. These models are

characteristic of imperfection sensitive systems, and under static condi-

tions they are subject to either limit-point instability or unstable

bifurcational instability (in both cases, violent buckling). The suddenly

applied loads are of constant magnitude and, in general, of finite duration.

The extreme cases of ideal impulse and constant load of infinite duration

were discussed and presented separately, as well, for two reasons:

(a) the concepts for these two cases are simpler to present and (b) his-

torically these extreme cases were treated extensively by the initial

investigators of dynamic stability of suddenly-loaded structures [2-13].

The methodologies employed by these investigators can be classified into

three groups: (i) equations of motion approach (Budiansky-Roth [3]),

(ii) the phase plane-total energy approach (Hsu [61), and (iii) the poten-

tial energy approach (Hoff-Simitses [2,11]).

The first approach (a) has hnd wide acceptance, because it is well

suited for computer-type solutions. The equations of motion are solved

for various levels of the load parameter. For small levels, the solution

is simply oscillatory; as the load level increases, the motion changes

to distinctly large amplitude (from the initial undisturbed position)

oscillations. The load level at which this change occurs is termed

i1



critical dynamic load. A great advantage of this approach is that it

can estimate the critical conditions accurately, and the loading can be,

in general, time-dependent. Of cou,'se, the obvious disadvantage is that

~it is extremely difficult and it requires a large amount of computer time

to solve the equations of motion for various levels of the applied load

(constant of infinite duration). The difficulty and the required time

further increase as the load becomes time-dependent.

The other two approaches can estimate conditions under which the

motion will remain oscillatory about the near static equilibrium position

(lower bound on critical suddenly applied load) or conditions under which

the motion will definitely be of large amplitude (upper bound). Hsu

termed the former a sufficiency condition for stability and the latter

a sufficiency condition for instability. Simitses referred to these two
bounds as critical loads and he termed the former minimum possible critical

load (MPCL) and the latter minimum guaranteed critical load (MGCL). In

many cases considered, the static critical load is coincident with the

upper bound. Needless to say, that the emphasis of approaches (b) and

(c) is to estimate the lower bound and use this as a basis for design

(whenever applicable).

This report deals primarily with extension of the energy concepts

discussed in Ref. 1, and application of the related criteria to a number

of practical structural configurations, such as frames, imperfect cylin-

drical shells (of stiffened and unstiffened construction) and shallow

arches. These systems also are subject to violent buckling under static

application of the loads.

Moreover, in the last chapter of the present report, the developed

*concepts are applied to structural systems which are not subject to

2



violent buckling under quasistatic application of the loads. The ensuing

discussion provides the necessary clarifications.

All structural configurations, when acted upon by quasi-static loads,

respond in a manner described in one of the five figures, Figs. 1.1 -

1.5. Thesa figures characterize equilibrium positions (structural response)

as plots of a load parameter, P, versus some characteristic displacement,

e. The solid curves denote the response of systems which are free of

imperfections and the dashed-line curves denote the response of the

corresponding imperfect configuration.

Fig. 1.1 shows the response of such structural elements as columns,

plates, and unbraced portal frames. The perfect configuration is subject

to bifurcational buckling, while the imperfect configuration is character-

ized by stable equilibrium (unique), for elastic material behavior.

Fig. 1.2 typifies the response of some simple trusses and two-bar

frames. The perfect configuration is subject to bifurcational buckling,

but smooth (stable branch) ia one direction of the response and violent

(unstable branch) in the other. Correspondingly the response of the

imperfect configuration is characterized by stable equilibrium (and

unique) for increasing load in one direction, while in the other, the

system is subject to limit point instability.

Fig. 1.3 typifies the response of troublesome structural configura-

tions such as cylindrical shells (especially under uniform axial compression

and of isotropic construction), pressure-loaded spherical shells and some

simple two-bar frames. These systems are imperfection-sensitive systems

and are subject to violent buckling under static loading.

A large class of structural elements is subject to limit point

instability. In some cases, unstable btfu-cation is present in addition

3



to the limit point. The response of such systems is shown on Fig. 1.4.

TWo structural elements that behave in this manner are the shallow spherical

cap and the low arch. Both elements have been used extensively.

Finally, there is a very large class of structural elements, which

are always in stable equilibrium for elastic behavior and for all levels

of the applied loads. These systems are not subject to instability under

static conditions. Typical members of this class are beams, and transversely

loaded plates. For this class of structural elements, Fig. 1.5 shows a

typical load-displacement curve.

The concept of dynamic stability as developed in Ref. I and as dis-

cussed in Refs. 3 and 6, was always with reference to systems which under

static loading are subject to violent buckling. This implies that dynamic

buckling has been discussed for systems with static behavior shown in

Figs. 1.2 (to the left), 1.3 and 1.4.

In developing concepts and the related criteria and estimates for

dynamic buckling (see Ref. 1), it was observed that, even for systems

whi-h are subject to violent (static) buckling, critical dynamic loads

can be associated with limitations in deflectional response rather than

escaping motion through a static unstable point. This is especially

applicable to the design of structural members and configurations, which

are deflection limited. From this point of view then, the concept of

dynamic stability can be extended to all structural systems especially

those of Figs. 1.1 (imperfect), 1.2 (imperfect and to the right), and

1.5. Note that from this point of view there is no question of dynamic

instability, but strictly a question of dynamic response in a limited

deflection space.

This extension of the concept will be amplified in Section 5. The

examples and applications chosen clarify the extension. Moreover, the

4



problem of a suddenly loaded imperfect column is presented, primarily

because it represents the only system, other than those which are subject

to violent (static) buckling, which has received some attention in the

open literature.
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Fig. 1.4. Snap-through Buckling Paths

(Through Limit Point or Unstable Branching).
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Fig. 1.5. Unique Stable Equilibritm Path.
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SECTION II

SIMPLE TWO-BAR FRAMES UNDER SUDDENLY APPLIED LOADS

The Stability Criterion

Consider the simple two-bar frame shown of Fig. 2.1. The two bars

are of the same structural geometry (length A, corss-sectional area A,

second moment of area I, and Young's modulus E). The vertical bar is

supported by an immovable hinge, while the horizontal bar is supported

by a hinge with three variations: (a) immovable (lodel A), (b) movable

in a vertical direction (Model B), and (c) movable in a horizontal direc-

tion (Model C). The external load, P(t) = H(t)P [H(t) is the heaviside

function], is applied vertically with an eccentricity e, and it represents

a constant force, P, suddenly applied, with infinite duration. The

transverse and axial displacement components are wi(x,t) and §(x,t),

respectively.

By employing Hamilton's principle, one can obtain the equations of

motion for the system.

t2

5 (T UT) dt =0 (2.1)
t1

where the functionals UT (total potential) and T (kinetic energy)

are given by

1 2 LF / .1w2 2 2
UT .Li' wi ;P] 2 L A x 2 wi,x) + El Wij dx

i=l -~,x

+ H(t) L 1 ) + Pe (2.2)

72x()
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Fig. 2.1 Geometry and Sign Convention of a Two-Bar Frame

2 m
T, , , 2,, + t, 2) d (2.3)

where the indices denote partial derivatives and m is the mass per unit

length, the same for both bars. The equations of motion are:

EA + 1 w2  'I -m =0
A i,x 2 i,x/,x mi,tt

El w - EA + 1 w2 ' i + m 0, i - 1,2 (2.4)
Lxxxx ti'x 2 liX) Vi'xj ,x itt

(8



The kinematic continuity conditions at the joint are

wl(2,t) = 2 w2 (L,t) =

WlIx(A't) = W 2 ,x (Alt) (2.5)

The natural boundary conditions at the joint are obtained from the

variational problem and by employing Eqs. (2.5), which are independent of

this formulation. These natural boundary (force) conditions are:

AE! L ,x(1,t) + Wl,x(t,t) + EI W2,xxx(t) - A'L 2,x(-"t)

1 2 7
+ w (Lt) W (Lt) + PR.t) = 0
2 2 , x '2,x

AEl, (1,t) +I w2,x(L,t] w,(1,t) - El wl(I,t) + AE[ 2 (,t)
L lx t)+2 1~~' l,x' l,xxx 9,

1 2
+ _ w2 ,(1,t) - 0 (2.6)

El w 1,xx(L,t) + w2,xx (L,t) + H(t) Pe = 0

Finally, the support conditions for the three models (A,B and C) are

listed below, as comuon to both models and those, which are different

Common
Y1(O,t) = Wl(O-t ) ' Wl,xx(O,t) = W2,xx(0,t) - 0 (2.7)

Model A

2(O,t) 0 0, W2(Ot) - 0 (2.8)

9



Ii

Model B

2 (0,t) 0 0, El v2 ,(0,t) - AELC2,x(O't) + , V(0,t)] 0 (2.9)

Model C
1 2

w2 (Ot) = 2 ,x(Olt) + 1 2 ,x(Ot) - 0 (2.10)

The initial conditions must reflect the fact that, the system is at

rest initially (t = 0).

ti(x,O) - wi(x,O) = 0 (2.11)

it(xO) - vi't(x,O) 0 i - 1,2

The solution of the equations of motion, Eqs. (2.4), a system of

coupled nonlinear partial differential equations, subject to the auxiliary,

Eqs. (2.5) - (2.7) and (2.8), or (2.9), or (2.10), and initial conditions,

Eqs. (2.11), is, at best, extremely difficult. Furthermore, even if the

solution is possible, for various magnitudes of the applied force, P, of

the eccentricity, e, and slenderness ratio, X, a criterion for stability

is still missing. One possibility, here, is to employ the criterion of

Budiansky and Roth [3", which, in this particular case, requires a wise

choice for a characteristic displacement response. Another possibility,

of course, is to employ this criterion in conjunction with an approximate

solution obtained on the basis of either direct variational methods or

methods of weighted residuals [14]. In this latter approach, there is

an uncertainty with both the direction and the estimation of the error

involved in the approximation.

10



In the light of the above difficulties, a simpler approach, giving

accurate results for design purposes, is needed. The analysis, described

and employed herein, provides an extension of the energy approach as

developed in Ref. 1. This extension is described in the ensuing para-

graphs and, in so doing, criteria and czzimates are clearly established.

First, by virtue of the initial conditions, Eqs. (2.11), both the

kinetic energy, T, and the total potential, UT, are zero at t - 0. From

the law of conservation of energy, for this undamped conservative system,

initially stress free, the total energy (Hamiltonian) is constant for

t > 0.

rif wi ; P +T Wj = C (2.12)
9X

where UT and T are given by Eqs. (2.2) and (2.3), respectively, and C

is a known constant (this constant can be made zero by properly defining

UT).

Since T is positive definite, Eq. (2.3), for all kinematically

admissible trajectories, then motion is possible only when UT is non-

positive, or

UT [~i, wi ; PJ ' 0 (2.13)

Next, let us assume that, at some level of the applied load P -

the ensuing motion is bounded, for all kinematically admissible trajec-

tories. Then, for each possible trajectory, regardless of whether it

corresponds to a true trajectory of motion or not, there is a set of

displacement functions of position LWi(x), w (x)i, i - 1,2 (because of

11



bounded motion) such that

UTLi ~ j=0 (2.14)

The collection of all such sets, corresponding to all conceivable,

kinematically admissible trajectories, forms a boundary, which is char-

acterized by UT = 0 and it separates the region of UT < 0 trom the

region of UT > 0. This boundary is dependent upon the level of the

applied load, P. Because of Eq. (2.13), it has been established that

motion can only take place in the region characterized by U < 0. At
T

this point, note that, regardless of the trajectory, the velocities

(§i,t wi t) are zero and a change in the motion takes place, whenever

the system reaches the boundary described above. Furthermore, the

region characterized by UT < 0 must contain at least one relative min-

imum point for UT, regardless of trajectory and time. It may contain

more than one relative minimum and some other stationary points. These

stationary points are characterized by sets of displacement magnitudes

and shapes, which, by definition, correspond to static equilibrium posi-

tions for the particular value of the applied load, P.

By having set, thusly, the stage, we can now define "unbuckled"

motion (see also Cl]). If the bounded region (UT < 0) contains only

one stationary point (a minimum) then the motion for this P is called

"unbuckled". The physical interpretation of "unbuckled" motion corresponds

to the system performing nonlinear oscillations about the corresponding

near stable static equilibrium position. This is exactly the case for

small levels of the suddenly applied load. The only way the motion can

become "buckled" (unbounded in the sense described above) is if the

12
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boundary characterized by the set of L~i(x), wi(x)_i contains an un-

stable static equilibrium position for the corresponding value of the

applied load. This value of the load represents an upper bound of

all loads for which the motion remains "unbuckled", and it is called,

herein, critical dynamic load. Incidentally, this level of the load

corresponds to Hsu's sufficiency condition for stability and Simitses'

minimum possible critical load (MPCL). Note that when damping is

present, for loads smaller than this critical dynamic load, the system

is asymptotically stable, because it will eventually come to rest at

the near static equilibrium position.

For the frame problems, under consideration, one needs only solve

the corresponding static problem and compute the value of the total

potential UT, at every static unstable equilibrium point. This static

solution is outlined below and it is given in detail in [15, 16]. By

dropping the inertia terms, the equations of motion, Eqs. (2.4), become

static equilibrium equations. The general solutions, obtained from

these equations, for the four displacement components, wit . ( i 1 1, 2),

are computed in terms of simple spatial functions and twelve constants.

Use of the three kinematic continuity conditions Eqs. (2.5), the three

natural boundary conditions at the joint, Eqs. (2.6) and the six support

conditions, Eqs. (2.7) - (2.11), yields a system of twelve equations

in the twelve constants. The load parameter, the eccentricity and the

slenderness ratio appear also in these equations. Some of these constants

are zero and the remaining ones, except for two, appear in a linear

sense. Elimination of these particular constants finally yields a system

of, at most, two non-linear equations that relate two constants to the

13



given parameters. A methodology is outlined in [15] for solving these

two nonlinear equations.

It should be mentioned here that the two constants appearing in

the nonlinear equations are measures of the axial force in the two

bars (ki) [the complete solutions are given in the next section). The

given parameters are listed below in nondimensionalized form

22 pA2 e (2.15)
2 I P

where p2 = I/A.

Thus, the total potential, UT3 for the static problem may be

2
expressed solely in terms of ki , b

2
, e and X, i.e.

UT = UT (ki, 82 e, X) (2.16)

For any given geometry (e, X), static equilibrium positions are

shown as plots of load parameter, 2, versus joint rotations (character-

istic displacement - see Fig. 2,2).At every point of this curve, the

2
value of the total potential is computed. The value of 2 at which UT

changes from negative to positive corresponds to the dynamic critical load,

2 2B 2  . Another possible procedure for finding BD is the simultaneouscrDcr

solution of the two nonlinear equilibrium equations

aT
-, ki 1,2 (2.17)
i

and

UT -0 (2.18)

14
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subject to the condition that the static equilibrium position, at which

UT = 0, is unstable, or

a2
k 0 i =1, 2

(2.19)

2 2 2 2
SUTI 2UT... 2UT

1 22

Note that Eqs. (2.19) imply that, the conditions for static stability

are violated.

This alternate procedure needs special attention, because it can

easily yield physically unacceptable solutions. These unacceptable solu-

tions arise from the nonlinearity of the problem and do not belong on

the load-displacement curve shown on Fig. 2.2 (physically unacceptable).

The numerical results, presented herein, are obtained from the

first solution, although the alternate solution was employed for spot

checking. Data are generated on the Georgia Tech high speed digital

computer CDC-Cyber-70, Model 74-28.

Summary of Static Solution Expressions

In addition to the nondimensionalized parameters given by Eqs.

(2.15), the following nondimensionalized parameters are also introduced.

X - x; wi= wili; 1 ";

2 Si 2

ki - i - 1, 2 (2.20)

where S is the magnitude of the compressive force in the ith bar.

16



With these parameters the solution to the corresponding static

problem and the expression for UT are given below for each model sep-

arately.

Model A

2

X- BM(X)

WI(X) = A11 sin k X + A X (2.21)

1 13

2

2 (X) - X - B2(X)

W2(X) A21 sin k2x + A23X

where

2 kA 2
1  s in 2k1 X\1BI(X) = 2 A3 + 2AlA 3sinklX +kll2 X+ 2 1 ")

22
B21(X) 2 .A13' + 2A21A213sin k21X + 2Ay1 (X +si22 ' !2 X '

B 1M2 +2A A sink k 2A2 1~ sin+
B2( 2 LA3 21 23 2X 2 + 2k) (2.22)

2 2

4 4 20B2) sink 2/k2,Vek2 cosk 2 + (k
4 + k2 -

Al k1 k 2(kI sink c o s k 2 + k 2 coskin k 2

2-4 4 21 kIk 2 (k1 sn 1 cos 2  + k 2cs k1 sin k

A ek2kcosk + k 2k4  k 2

13 21 23' 1 k2 /k

and ki, k2, for every value of the applied load, 82 load eccentricity,

, and slenderness ratio, X, are obtained from the simultaneous solution

17



of the following two nonlinear equations

k2Al sin k + I13 B2) +  "0

(2.23)
2

A21 sink+ A23 - B(1) .2 0

The expressions for UT and joint rotation, cp, are

4 4 2 4 2 4  sin 2k2
1 +k 2  A1 k 1  sin 2k, A2 1 k1 -(1- :- --2+ 1 2k1 22

+ 20 2[e(A2 1 k2 cos k2 + A2 3) - (A21 sink 2 + A23)] (2.24)

9 = WX (1) = A11k1 cos k + A1 3  (2.25)

Model B

2
k1

W (X) = A11 sink X + A 3x ; (2.26)

2
2~'(X) = - -2 X - B2 (X) W2 (X) = A21 sink 2X + A24

where

klAl

Bn(X) 1 *2 (X + sin 2kX
1 2 A1 3 X + 2A11 A13 s 1 21 (x 2k1

B2() -k 2A2 l( sin 2k X
B 2

2() 
1 2k 2 x
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2- 4 2A ek2 cosk2 + k2 sink2 /k1

11 klk 2 (k1 sinkI cosk 2 + k 2 cosk1 sink 2) (2.27)

2- 2
5 ekl cosk - k2 sink I

A 21 k 2 (kI sink cosk 2 + k2 cosk sink2)

2
A 2 2k k A B ( ) + I A sink
1 3 = -k/k 1  24 1 ( --- -A 2 1 i 2

an = 
2  2ad k 2) for every value of the applied load, 2adk 2(since far this case k

and structural geometry, e, X, can be found from the solution of the following

nonlinear equation:

2 i 2, sin 2k\ 2 2 2

k A ' A I + 2k 2 - sink + 2 + 2 - = 0 (2.28)
2 2121 4 2 2]2

The expressions for UT and joint rotation, yp, are

4 4 2 4 sin2k 2 k 4  sn2k
U= kI + k2  Allk l  i A + A2 1k 2 ( i - 2 (2.29)
T 2 2 2k 2 2k2

2'
+ 20 e(A21k2 cosk2) (A21 sink2 + A

y A1 lkl cosk + A (2.30)
111 1 13

Model C

2
k 
1
X 3 - B W l sin k X

'2 A25  B2 (X) W2  A X+ A X (2.31)
42 21 23
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where X 2 sin 2klX,

B (X )  k~lI

4 2k 1

/f9 2 5 3 2SB 2(X) = A21  21223
B =M 2("5A2 X + 2A 21A3X + A23;

k 2 + 02(e -1)

A11 =1 2 (2.32)
k 1sin kk1

2 2k1

A2 1  6

2 2 2 2

A23 1 kI cot kI + 2

A2 5  A 1 1 sin k1 + B2(l )

2-
and k is the solution of the following nonlinear equation (for any ,

I

and X):

2 2 2 + 52(- 2
- k + k 1  cot kI  2

(2.33)

2 2- i~
2 k + 8(e"1)-

2  s 2k1) -2

-L k sink j2k

Finally,

14 + 2 4  sin 2kUT  kl Allkl + 12A21

UT ~2 2 2k1  , 21

(2.34)

+ 202 e (3A2 1 + A2 3 ) - (A2 1 + A2 3)j
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=A k cosk (2.35)

Numerical Results and Discussion

On the basis of the criterion established, critical loads are

computed for all three frames and for a large practical range of load

eccentricities (-0.01 e < 0.01) and of slenderness ratios (X = 40, 80,

=). The results are presented graphically in Figs. 2.3 - 2.5. and dis-

cussed separately for each frame (Model).

Model A: The results for this model are presented graphically on

Fig. 2.3 and part of them in a tabular form on Table 2.1. It is

observed that, as in the static case, there is a small positive eccen-

tricity, ecr' such that for e e cr there is dynamic instability, while

for e > ecr there is not. This ecr is %-dependent and identical to the

corresponding static case. For all X-values considered, except X

2 2- -the difference between rD and 8 is the largest at e - e cr and it
crD cr st

diminishes as e increases negatively. On the contrary, for X - this

effect is reversed and more specifically, the difference is close to

zero at e = ecr and it increases as e increases negatively. In addi-

tion, eccentricity has a destabilizing effect regardless of the value

of the slenderness ratio. This effect is less pronounced for the static

case.

Finally, dynamic instability, as defined herein, takes place with

a trajectory corresponding to a positive joint rotation cp. Because

of this, of course, the compressive force in the vertical bar, k I , is

higher than the applied load, 8 2, at the instant of possible "buckled"

motion (trajectory possibly passing through the unstable static equi-

librium point).
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Note that the experimental results of Thompson (A = 1275 [17]

agree very well with the X - theoretical prediction. The largest

discrepancy between theory and experiment is approximately 1.5%.

Model B: This is the only model, which exhibits bifurcational

buckling (through an unstable branch) under static application of the

load. The results are presented graphically in Fig. 2.4 and part of

them in tabular form on Table 2.1.

It is seen from Fig. 2.4 that the effect of slenderness on the

dynamic critical load is appreciable, while its effect on the static

critical load (limit point load) is negligible. In addition, for all

A, except X - , the difference between the static and dynamic critical

loads is the largest at e 0 and decreases as [e] increases. Further-

more, at e = 0 and for a given X, except X - , there are two dynamic

critical loads, one corresponding to a negative rotation y trajectory

(the lower) and one corresponding to a positive p trajectory (the upper).

Definitely the system, for e = 0, buckles in the mode associated with

the lower load and it should be designed for this lower dynamic critical

load. But the results indicate that a small positive eccentricity, in

this case, has a stabilizing effect, because it forces the system to

dynamically buckle through a positive rotation ep trajectory and there-

fore it can carry a higher load. In general, though, eccentricity has

a destabilizing effect. This means that as 1l1 increases the dynamic

critical load decreases.

Model C: The results for this model are presented graphically in

Fig. 2.5 and part of them in tabular form on Table 2.1. The observa-

tions for this model are very similar to those corresponding to model A.

22



Table2i: Critical Condttins for X - 80

Model k k 2
1 'Icr, ~ crD cr s

D.00047268 13.350303 0.701563 12.7054 0.915

0.0000 13.319785 0.709696 12.6625 0.935

-0.0013 13.239899 0.732511 12.5486 0.948

A -0.0025 13.170965 0.753974 12.4483 0.954

-0.0050 13.040181 0.799120 12.2528 0.961

-0.0070 12.946092 0.834976 12.1081 0.963

-0.0100 12.819032 0.887372 11.9077 0.965

0 8.77116 .37756 8.77116 0.8887058

.002 8.37378 .42278 8.37378 0.9010594

.004 7.99803 .46167 7.99803 0.8986994

.008 7.31164 .S2393 7.31164 0.8867721

.010 7.00021 .54887 7.00021 0.880"564

B 0 9.24600 .31035 9.24600 0.9368172

- .002 9.05455 .34513 9.05455 0.9554539

.004 8.88447 .37852 8.88447 0.9606390

.008 8.59210 .43900 8.59210 0.9592319

.010 8.46421 .46605 8.46421 0.9558657

0.0004722 1.37022 n 1.27144 0.895

0.0000 1.36547 0 1.26421 0.921

-0.001) 1.35332 0 1.24523 0.939

C -0.0025 1.34319 0 1.22885 0.946

-0.0050 1.32475 0 ].1977. 0.953

-0.0075 1.30910 0 1.1699', 0.955

-0.0100 1.29550 0 1.14492 0.956
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In all three models, when the alternate method was employed, Eqs.

(2.17) and (2.19), in some cases, the results were physically unacceptable.

This is only mentioned here as a word of caution to those who may attempt

to use this particular procedure for estimating dynamic critical loads.

For the systems investigated herein, a less restrictive definition, re-

lated to the boundedness of the motion, may be employed, which is: an

unbounded motion takes place for that magnitude of the applied load for

which UT assumes always negative values no matter what combination of

kinematically admissible functions wi, can be assigned; Otherwise

the motion is bounded.
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SECTION III

STIFFENED AND UNSTIFFENED, IMPERFECT CYLINDRICAL SHELLS
UNDER SUDDENLY APPLIED LOADS.

There are a few publications dealing with dynamic buckling of shell

configurations. Some of them deal with shallow spherical caps (see [12]

for a fairly complete review) and even fewer with cylindrical shells

£f4, 18-22', most of which are based on the Budiansky-Roth approach. In

this chapter, the necessary criterion and the related solution methodology

are presented, based on the energy approach £1].

The Stability Criterion

Consider a stiffened, geometrically imperfect, circular cylindrical

shell, (see Fig. 3.1), supported in various ways (all possible boundary

conditions) and loaded suddenly by a set of loads consisting of uniform

axial compression and uniform pressure. These loads may be applied

individually or in combination, but they will be, in general, represented

by a load parameter X. The case considered, herein, corresponds to

suddenly applied loads of infinite duration and constant magnitude.

Since the internal and external loads are conservative, the system is

conservative.

Let u, v, and w be the reference surface displacement component

(see next section) which are, in general, functions of position (x, y, z)

and time, t. Then, the total potential is a functional of the displace-

ment components and their space-dependent partial derivatives. Similarly,

the kinetic energy is a functional (positive definite) of the time-dependent

derivatives. The functional is said to be positive definite if it is

positive for all possible values of the functions in the integrand, except

zero, in which uase the functional is zero.
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On the basis of the conservation of energy principle, the total energy

is a constant, C, or

UT u,v,w;xJ + T LUIvitaw,tj = C (3.1)

where UT and T are the total potential and kinetic energy functionals

respectively and C is a constant as far as buckling trajectories are

concerned. This means that, in the case of uniform pressure on a cylin-

drical shell, the breathing mode trajectory cannot possibly be considered

as an admissible buckling trajectory. The reason for this lies in the

fact that a perfect cylindrical shell with ends free to expand and/or

contract when loaded by uniform pressure deforms in the breathing mode

primarily (primary path), therefore "buckled" motion cannot possibly

occur through this mode. Then, C in Eq. (3.1) will account for the

potential of the external forces because of primary path modes. Note

that in the case of axial compression C contains the potential of the

axial force in connection with the axial mode (the part of u which is not

w-dependent). This point is further dealt with in a later section.

Next, define a modified total potential, U Tm such that
mod.

U + T 0 (3.2)

Tod.

where

U U -C
mod.

With this modification the criterion becomes identical to that for

the irame problem (Section 2).

The Static Solution

It is obvious from the stability criterion as applied to the case of

sudden loads of constant magnitude and infinite duration, that a complete
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static analysis is needed. This includes pre-limit point behavior,

establishment of the limit point and post-limit point behavior. At each

equilibrium point, the corresponding value of the modified total potential

must be evaluated. According to the criterion, then, the value of the

load for which the modified total potentia' in zero at an unstable

equilibrium point (post-limit point) corresponds to a lower bound of the

critical dynamic load.

Consider an imperfect, orthogonally stiffened, thin, circular,

cylindrical shell (see Fig. 1), loaded by axial compression and/or uniform

pressure. Let w° (x,y) denote the deviation of the shell midsurface (taken

as a reference surface) from the corresponding perfectly cylindrical one.

Moreover, let u, v, and w denote the displacement components of the

material points on the reference surface. The component w(x,y) is measured

from the reference surface in the radial direction.

The nonlinear kinematic relations for this configuration are

0 + i[2 o\

exx U'x W + 2wxWox)

w + 1(wi +2w, w)e YY V, y R 2 +' \Wy + 9Wy)

(3.3)

Yxy0  2e U, +V, + W, W, + W, Wy +w W,
xy xy y x x y x y y

xx xx yy yy xy xy

and

e =C 6 - zw,
xx xx xx

0 - zw, (3.4)
yy yy yy

.- 0 -zw

xy xy
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II

The relations of the stress and moment resultants to the strains

and changes in curvature and torsion are (see Ref. 23):

Nxx Ex F(1+), )e' + ve" e ex'k

-xx yy x xxxxj

N E [v~ex+ (l+X )e" - eyx ~y
Nn E xx xX yy yy y yyyy-

P

N E I(1-v)e
0

xy xx L xyj

(3.5)
Mx=D{(i-txx) + 122eI + y - exkxxe

xx

2 22 12 e

M D(1-) ++
xy xy

where

E Et/(l-v 2); D - Et 3/12 (1-v 2); Xxx A (i-v )/t,9
xxxx x x

p

X" A y(1-v 2)/tA y; Pxx = El xc/DA x; and p. = El c/DAy

From Eqs. (3.5) one may derive the following expressions for the

reference surface strains

Co a N + a2N +ak +aCxx I alxx 2 ay 3 xx e4yy

0 N + b N +b +bft (3.6)
yy 2NXx 2 yy 3xx 4yy

Cxy =  Xy T Nxyl ')xx
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Il
where

a I = (l+k )/E ; a 2 = -v/cExx a3 = (l+X )e kx /a
yy Xx xx2P yy x xxp P

a4 = -e % /a ; b 2  (1+). )/cEx ; b 3 = -vexXxx/a (3.7)

b 4 = (l+ x )ey X YyI a = (1+XX)(l+X yy) -

By employing the principle of the stationary value of the total potential

one can derive the following equilibrium equations

N +N =0
xx,x xy,y

N +N =0
xy,x yy,y

N
M +2M + M =U + Ny(w,+W y), + N (w, -+W,xx,xx xyxy yy,yy R yy y y Y iy xy x x)Jy

+ N (w, w, +x'x +[Nxy(w,y+w y)j x + p

By introducing the Airy stress function, as Nxx -Nxx + F, , N yy= F,x x

and Nxy = -F,xy where Nxx is the level of the applied uniform axial com-

pression, the first two of Eqs. (3.8) are identically satisfied.

Next, by eliminating u and v from the first three of Eqs. (3.3),

employing Eqs. (3.6), the Airy stress function and the last three of

Eqs. (3.3) one can derive the compatibility equation in terms of the

Airy stress function, F and the radial displacement, w. If one expresses

the third of Eq. (3.8) in terms of F and w, the governing equations con-

sist of two coupled partial differential equations in F and w. These

are:
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Equilibrium

DLF - L F - F, /R + N (w, + Wx) - L[F,w + w0 ] - p f 0 (3.9)D wh -- xx xx xx xx

Compatibility

Lr[Fl + L [wj + !L w,w + + W,xx/R 0 (3.10)
d q 2,,

where Ldo Lh , and Lq are differential operators defined by Lg,

Lg[S3 z glS,xxxx + 22S'xxyy + 22Syyyy (3.11)

with

dl f (l+Xxx)/aExx

p

d 12 = (+x )(1+xyy) - J/fa(l-v)Exx (3.12)
p

d 22 =(l+yy )/Exx
p

12 . e2xx ( I + X v2)
hl= I + Px =f -

= I+12 xexxyy (3.13)
t 22)

e G (+ X -v)2
+ 12 e yy xx

f22 1 yy t2  a

qll = -vexxxx/a

q = [(1 + xyy)exXxx + (1 + xx)eyy]/( 2 t) (3.14)

22 = -ey
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and L is a differential operator defined by

LS, = SS T, - 2S, T, + , YYT, (3.15)L[, =SxxT yy 2SxyT xy yyxx

The total potential expression, in terms of the Airy stress function and

the radial displacement, is given below

UT = (81Fyy + $ 2 Fx + $3FxF, + 84F'xy)dA

UT 2E 1 2 x FF 3Fxyy
xx Ap

D 2 + + 4W )dA - pwdA (3.16)
A (cllw~yy + o2w~xx + 3wxwy w A

NX 1 -2 -

7 XX F(21F, + F +RL N N 2nRLe

2E A yy 3 F'xx A  E+  xx xx AVxx Axx
p p

where eAV (average end shortening) is given by

eAV rA u, dA/2TRL (3.17)

and

A =d E ~ S d E ; S 2v/a; S 4  2/(1-v)
1 22 xx 2 ll xx 3  4

p p

v 1 2 ee (3.18)

cI = h2 2 ; 2 h1 l; y3 = 2v2'-i + -% 2 q4 2 (1 v)
t

Similarly, the expressions for the average end shortening and "unit

end shortening" at y = 0 are given by

e- 1 2I RLL- + + +=A f al x 2 R L 1aFyy a2Fxx a3Wxx awy

1 . (3.19)

W2 (w, + 2W, )idxdy
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e aN - I -alF, + a F, + a3W, + a w'yy
1 XX I. Iv yy 2 xx 3 xx 4 (.00 (3.20)

- ." (w, + 2w') dx
yO0

Note that e measures the amount of end shortening per unit of cylinder

length, L.

The associated boundary conditions are either kinematic or natural.

Thus, one must prescribe the values of either u, v, w and w,x or Nxx,

N y, Q* and M .
xy x xx

Before listing the various boundary conditions, the expressions for

M and Q* in terms of F and w are given. Moreover, a few explanatory
xx x

remarks are presented for certain boundary conditions.

First, the expressions for Mxx and Q are:

M = Y1W, + y2wy+ Y3(F, yy Nxx) + y4F,

(3.21)
0 0Qx = (F, - Nx )(w, + w, ) + F, (w, + w, ) - M -

x yy xx x X xy y y xx, x xyl
x Xy

where

1 =Dh11 ; y 2= '3' = -3; Y4 D -- b (3.22)

As far as the in-plane boundary condition at either end one may

write

either or (3.23)

I iN 8u 0(
x x x (u = prescribed)

but in terms of the Airy stress function one may write

either or
F, = 0 u - prescribed (3.23a)
yy
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From the above it is clear that the true in-plane condition (at one of

the two ends) must be F,yy = 0. At the other end it could be u = 0.

Note that if one assigns various values to u at a boundary the correspond-

ing load (N xx) is unknown. This approach is not covered in this report.

xxxFinally, if the applied load, Nxx passes through the reference

surface and the reference surface is hinged (for the simply supported

case), then in this case one may write M = 0. On the other hand if the
xx

load is applied in an eccentric manner then M # 0 ut M = + eN ,

where e is the load eccentricity (if e = 0, one has the usual simply

supported condition).

All possible (extreme) boundary conditions are included in the

analysis and the related solution methodology (including the computer

program). These are, simply supported (SS), free (FF) and clamped (CC)

for all possible combinations of in-plane boundary conditions (i=i,2,3,4).

I. F, =F, = 0

SS-i; w = 0; Mx f+eN . Fxy YY

x - xx 2. F,xy = 0; u 0

CC-i; w = w, x =0 3. v =F, =0 (3.24)

Qx =+eN4. v =0; u =C
FF-i; 0*=0; M +eN 4Cx XX - XXwhere C = constant

The conditions in u and v can be expressed in terms of w and F as

in Ref. 24. For example, the condition u = C in SS -2 can be replaced
f0
by a condition expressed solely in terms of w, w°, F and their gradients.

This is accomplished by the following procedure:

This boundary condition, SSf2, at x = 0 or L is given by w - 0;

F, M0, H = + eN and u = C. The first two are in terms of w and

F. The third one, M - + eNx, from the first of Eqs. (3.21) is
xx - xx

expressed in terms of w, F, and their gradients. For the last one, one
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notes that [see Eqs. (3.3) and (3.5)]

S1 LU,y * v, +W2 W 0 + W, xwyI = -F,xy/ 1-v)Exx (3.25)
- 'xyx x y 'x x F~y(V)

P

since F,xy = 0, Wy 0 because w(O,y) 0 0, and U,y 0 because u(O,y) - C,

Eq. (3.25) becomes

0

V, + W, w 0 = 0 (3.26)

Similarly, from Eqs. (3.3) and (3.5) one may write

eyy V, + l [w,y(w, + 2w,)] -

+b N +bK +bK (3.27)
a2 Nxx 2yy 3 xx 4 yy

This equation, Eq. (3.27), is valid at any point along the shell,

therefore differentiation with respect to x does not violate its validity.

If this is done and if the N's and K's are expressed in terms of w, F, and

their gradients, one may write

V, + 1 w, (w, + 2w,) + w, (w, + 2w,)] -xyx  2 xy y y y xy xy R

(3.28)

a2F,yyx + b 2 F,xxx + b3w,xx x +b4wY. x

Evaluation of Eq. (3.28) at x - 0 or L, and use of the fact that

W,y (O,y) - 0 yields

V, + W, w 0 - Wx/R - a2F, + b2F, + b3W, + b,yyx (3.29)
*YX xy 'yxi 2 yyx 2 xxy 3 xxx y x

Differentiation of Eq. (3.26) with respect to y, yields

o 0
V,xy + W,xywy + W,xW,yy a 0 (3.30)
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Substitution of E'q. (3.30) into El. (3.29) yiclds a boundary condition

equivalent to u = C, or

b2 F, + b3 W, + b 4w,yy x  ( + W y) 0 (3.31)

Similar steps may be followed to express all possible boundary conditions

in terms of w, F, and their gradients. In order to save space, only the

final expression for all possible boundary conditions, Eqs. (3.24), are

given below, which have been incorporated into the comput.. program (see

Appendix A). The condition, shown below, corresponds to uniform applica-

tion of N across the cross-section (Mxx = aNxx) .

SS-1 w = ylw, x x + Y4F x x = F,xy - F,y = 0

SS-2 w= Ylw'xx + Y 3Fyy +Y 4 Fxx =Fxy 0

b2F, + bW, + bW + W, G + w,.° = 0
2 xxx 3 xxx 4 =yyx ' x  R=

SS--3 w YlW,xx + Y4F,xx F, =,bF +b =

(3.32)

SS-4 wYlw"xx +Y 3F,yy+ Y4F, = a2(F, yy - )+b 2 Fxx

i + bw W = 0

a 2 
+ 2Al" )Exx p F,xyy + b 2 Fxxx + b3wxxx + b4W'xyy

+ wQ= + =0

CC-1 w = W x W F,xy . 0

CC-2 w - w,x M F,xy 2 0 b2F,xxx + b3W,xxx M 0

CC-3 w -w,x a F, yy = 0 b 2 Fxx + b3 wxx a2 Nxx
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cc-4 wv w, = a 2F -NE + b 2F, xx+ b3 W, = 0 ( .3

a2 + 2/(l-V)EjF, +F bw 0
xx yyx 2 'xxx 3 'x

Simiarlythe FF-1 condition and the symmetry and antisyiunetry conditions

*at X= L/2 are

FF-1 Y1wx +"2yy+ 4F,2 = F, =F,x = 0

~1 (3.34)

4Fx + Yi1 Wxxx + H'Y2 + 2D(1-V) w, Y + N I (w, x w, Wx) 0

Symmetry (w, Q = Nx=U =u0)

0
w,x =Yiwx + Y 4 F,I - (F, yy- NX) W., 0 (3.35)

0
F, ,, b 2F xxxb3 Wxxx +W, W, y, =

Antisyminetry (w = M xx= v = F, =y 0)

W = +Y W, F, =0 (3. 36)

Fyy ,b2 Fxx 3 bwxx =a2 xx

For the case of zero load eccentricity the various boundary conditions

become

SS-1 = Y1 W, xx+Y 4 F,x = F, xy=F,y = 0

w ~ ~ ~ x yy FFx Fx

SS-2 w = Yi sxx+Y 3(Fyy - "I>+ Y 4 , =,

b F, + b3 x w+ by + (.1+ o 0=
2 xxx 3xx 4lyyx wx R'Wyy

SS-3 w W, x + Y4 F,)M F, yy =b 2F, xx + b 3 Wix £M
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SS-4 w = YlWxx + V3 F,yy- + Fxx = a2 , yy xx

+bF 3b( =0x Y 2 y X.

+ b2F,xx + b3wxx 0

(3.37)
a + 2 /(l-v)Ex F, + b2 F, + b3W, +b W,a2 +x 2/1' JiXp Fxyy 2' 3 xbx4W'xyy

+ W, (I +wo 0=x .R 'yy

CC-I w =w,x = F, xy = F,yy 0

CC-2 w =w,x = F,xy = 0 b2 F,xxx + b3W,xxx =0

CC-3 w =w, =F, = bF, +bW = a2Nxx (3.38)Wx Fyy b2Fxx b3Wxx 2x

CC-4 w = w,x = a2 (Fy + b 2Fxx + b3W,xx = 0

a2 = 2/(l-)ExxpJ F,yyx + b 2Fxxx + b3W, xxx = 0

Similarly the FF-I conditions are

FF-l ylWxx + 2Wyy + Y4 F = F, = F, = 0'yy 'y(3.39)

y4 F, + YlW,xxx + Ly2 + 2D(I-v) w, + Nxx(w,x - w, = 0
4~~ ~ ~ x +Ywxx+L2xyy

The problem, as formulated herein, is to find the complete nonlinear

response of the shell to externally applied pressure and compression.

This response includes post-limit point behavior or postbuckling behavior,

whichever is applicable. Thus, all equilibrium positions may be presented

as plots of applied load parameter versus some characteristic displacement

(the average end shortening is one possibility). Moreover, at each equi-

librium point, the values of the total potential and modified total

potential are recorded, in order to establish critical dynamic conditions.
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Solution Methodology

The solution methodology described, herein, is an extension of the

procedure outlined in [25). Therefore, some duplication is unavoidable,

especially in the interest of making this section self-contained.

As seen from Eqs. (3.9) and (3.10), the field equations consist of

two coupled, nonlinear, partial differential equations in terms of the

transverse displacement component, w, and the Airy stress function F.

A separated solution of the form shown below (see [241), is used in

order to reduce the system of partial differential equations to one of

ordinary differential equations.

K

w(x,y) = W.(x) cos my
i R

i=O
(3.40)

2K
mm

F(x,y) = f1(x) cos R
i=O

where n denotes the number of full waves around the circumference.

The initial geometric imperfection is ali expressed in a similar

form

K

W 0 mXY OWC.iy (3.41)W°(x,y) = W.(x) cos R341

i=0

where W0(x) denotes known functions of position x.

The following steps are employed in order to accomplish the reduction

to a system of ordinary differential equations. First, Eqs. (3.40) and

(3.41) are substituted into the compatibility equation 'Eq. (3.10)j. Next,

by employing trigonometric identities of double Fourier series involving

products (as in [26]), the compatibility equation reduces to a trigonometric
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series in Iny . The coefficient of each term involves differential opera-R

tions on W,, f., and WO. Use of the orthogonality of the trigonometric

functions reduces the compatibility equation into 2K + 1 ordinary, non-

linear, differential equations.

Next, the Galerkin procedure is employed (in the circumferential

direction) in connection with the equilibrium equation [Eq. (3.9)]. This

leads to the vanishing of (K + 1) Galerkin integrals, which results into

a system of (K + 1) nonlinear ordinary differential equations in W. and f..

These equations are:

(a) Compatibility (2K + 1)

for i = 0

2 K
1 n ,,2 )Wfo-ql W W /R + 4R2  + 2W )Wj + a Nx (3.42)
y1 L Ij=2

The above equation is obtained from the first (fourth order) compatibility

equation, with the continuity condition on v at zero and 2r satisfied.

for i = 1, 2,...,2K

i"in2

dlf - 2-' d f +{- d f
11i ~ R 12 i \R 22 i

f i l l , i n \ 2 , , i n " 4 ,

+ 6 iqlW 2(-7 ql2 W i + R q2 2Wi +Wi/R

2  
K

-n ( ifF D 2 (W + 2W" 0 (3.43)
24 ij i+j i+j

4R2 J_=W0 j  2i j ) (.3

+ (2- 2 2W ) -q dl~l(i'j)2 li~j,(li_jl + 2wli~jl)lW'

+ [ (W + 2WiOj) + (2 -
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+ 2WT l)]fw + 2[(i+J)6 +.(Wi+j + 2W o)

o ' )]w -0
n 1iji-J161i.J1(wji_jj + 2Wjwl j W,

where

{00 ::
A K#1 K> 0

and
d

) =dx"

(b) Equilibrium (K + 1)

for i 0

fil 2 11 " +owt R 2  d ) oil

W0  Dh11 + q11/dl 0o2qll/Rd1 l] + W• dl) + N (W +W )

2 K i
n ( 2qll +2W0)W(W ++ (W + 2w ) W- -4R2  =" id I 2jw

J=1 (3.44)

1 0 11

for i 1, 2,...,K

f ill /i,2 of (in\ 4
DLh llW i 2I k -R.' 2 W + n h 22YL

- ,, ,5 2 in , 2 ,, + n q+4  f /R

" .qllf -,2 (R) q12 fi + \'-) q22 fi + fI
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+ N (W + W0 - -(Wn)2](Wi-- in+ 2xx Wl ) Oidll LRdll- (Wi

4 .2 K
+W0) + 2 2 a + W 0 7 24R LlI W + 2wj)W

4R 11 j =j=l
n22 a- 2 2K

21 2R2

+ (2 - (i-j) (3.45)

" O" 2 2i+j (Wi+j + + (2 - i)8i.j (wli-jl + Wiij)]j fj

+ 2[(i+)6,~ (W + W o
)i+j (i+j i+ j

,,f- ii-J16iijl(w i-jj +Wlijl)jf" = 0

For a given imperfection and value of the applied load, Nxx' Eqs.

(3.42)-(3.45) represent a system of (3K + 2) coupled nonlinear differen-

tial equations in (3K + 2) unknowns, fl with i = 0, 1, 2,...,2K and W.
.

with i = 0, 1, 2,...,K.

Note that by setting n=0, Eqs. (3.42)-(3.45) reduce to the linearized

version of the equations of compatibility and equilibrium. Moreover, it

is seen from Eqs. (3.40) that regardless of the value of n(-1,2,...any

integer) the axisymmetric mode (4 0, fo) is represented because the sumnma-

tion on i starts from zero.

In addition, it is seen from Eq. (3.41) that the imperfection

expression is suitable for the case when the imperfection shape is similar

to the buckling mode, as well as for any arbitrary axisymmetric imperfec-

tion and for any arbitrary symmetric (with respect to y) imperfection.
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In this last case, a solution can be accomplished by setting n=l, [see

Eqs. (3.40)], and by taking K sufficiently large in order to achieve

a convergent solution and have an accurate representation for the imper-

fection.

Next, the boundary conditions (at x constant), for two cases of

simple supports are presented below.

SS- !  (Kxx 0)

Wo Wo -Y 4 a2 Nxx/(Yld 1 1 - y4qll)

'1I!

W- M yi 1 + y4 ff - 0; i - 1, 2, 3,...,K (3.46a)

f M f, 0; i 1 1, 2, 3,...,2K

SS1(xx a3Rxx)

II I

WO0; W°  -*O x(',ldll -'4 qll)

Wi - YiWi + Y4fi - 0; i - 1, 2, 3,...,K (3.46b)

f" f, 0; i 1, 2, 3,...,2K

SS-2 (Mxx -0)

W°  = 0; W°  - a4a2Nxx/(yldll  Y4qll) + Y3Nxx

WL M YlWi N + (.L) 2R J + "4i L 0; i 1, 2,...,K
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I!
f, = 0; i 1 1, 2, 3,...,2K

m 1 2 1

n) \R/b Wi - --2R2  (i+J)ZWO (3.47a)
2 1 3i\R 1 R L-L i+jJ=o

22

+ (I , + I,) (i-J) W = 0; 1 = 1, 2,...,2Kj-ii-jl 'i

sS-2 (Mx =a 3 Nxx)

W = 0; W -lyaN /(yd Y4qll )

0 0 4 2~ 111 411'l

in\,2 f+yIt" iI\ "Y~ =Y R)1 4f 0; i 1 , 2,...,K

f£ ; 0; i 1, 2, 3,...,2K (3.47b)

fit2 0
1 2 o

bf+W -W (-W (--
2 i \ 4 R 2R2 L (i+j) i+j

2~ 2R

+ (I - + I) (i-J) w W = 0; 1 = 1, 2,...,2K

SS-3 (M = 0)

I,

w 0; W i" y 4 qll )0o 0 " 4a2Nx/('Yldll Y

Wi  yiWi + Y4 f= 0; 1 1, 2,...,K (3.48a)

f b 2 f 3W - 0; 1 - 1, 2,...,2K
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SS-3 (m a3 N)

It

W° = 0; Wa -04 a2 Nxx/(*jdjj - Y4q1 1)

II II

W yi = ylW + Y4f, = 0; 1 - 1, 2,...,K (3.48b)

I! II

fi S b2fi + bW 0; 1 -1, 2,...,2K

ss-4 Mxm = 0)

10 -

W- = -Y a2 N /(NIdl - y 4qli) + Y31Nxx

0" '2xx 1 21 31

W -=L " 2 + / ) -] :. + +4fi b 0; 2,...,K

K- b4 )W+RW~!2 in )j 0 + -2to

2R2

a N + : = 0; 1 1, 2,...,2K

SS-4 ( xx R La3N2)

o; Wa ./(yld 1 1  4 q1 1 )

,, (in 1n n ,,2 0

- 7 f + y4f1 " 0; 1 - , 2...,K
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2t
/ inI2

, II

- a 2 y.) fi + b2 f1 
+ b3Wi O; i - 1, 2,...,2K

-L2 + 2 /(v)E/ i + b2f + b3W " b- W.

K (3.49b)
+I ni + 2R

R 2R 2 - L 1 -i
i-a

+T1.) W~ijW W. 0; 1 = 1, 2,...,2K

CC-j W = Wi =0; i 0, l,...,K (3.50)

(j=1,2,3,4)

and

CC- fi = fi = 0; 1 1, 2,...,2K (3.50a)

II II

CC-2 f i b2fi + b3W 0; 1 - 1, 2,...,2K (3.50b)

CC-3 f, = b2f1 + b3Wi 0; 1i 1, 2,...,2K (3.50c)

II 1?

cc-4 a ( fi + b f + bW 0; 1 - 1, 2,...,2K

[a+ 2/(l-v)Ej(.x f + b f1 + b3W.M 0,(35d

1 , 2,...,2K

Note that Eq. (3.42) is employed to eliminate f from the remaining
0

equations, and there are no boundary conditions with reference to (fo).

Thus, the number of boundary conditionA, at the x - constant boundaries,

is equal to (6K + 2) instead of (6K + 4).
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Similarly, the expressions for the total potential, UT, average end

shortening, eAV , and "unit end shortening", e, can be written in terms of

fi (i 1 1, 2,...,2K) and Wt (i 0, 1, 2,...,K).

Lf'.1  2 r 0
U 2 j_ ,r- - q W + a2NT 0 xE .2 L R 11 0

p 1

22 2 2K+- /- w+ 2W,'w +7 -! t_ 1,
4R i i i

+ 112 - if,, + 84(i, 2 f] + K o

(3.51)
K 4  t 2  if
, L in.) W 2 + 2 " in\/w
i=l

2 lot + 2w ) ]dx

i-l

+ z YJ3 r LW" . W +2 0

L jj -2 RP
+2TRa x W0dx -N

0 xxExxP

- +i L " 2 W+ q1 1 + (.2
!AV =a'xx L J ',d R1% a2 xx

41 30KtJ "4R 2 ' '2 t~l 2 ( , +  2WO)Wd a 3  (3.52)

K- 
I I

+ IW'w+o +Y W (WL + Wo') dx2 o (o +Woo') + .4
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1L[la2 ofW I ~
e ~ a..+ 1W- + qlW+ a--+xx L 0 d 11 a2Nxx

K 2K
n 2 2- 0 -[ in \,2" 1 i2 (Wi + 2W°) Wi] + 7jq(\T 2 fi

4 R 2 (W--1 i \l

(3.53)
K K

-a 2fj j- a 3  Wi + a4  L

i=O i=l

K K+1 7 W 7 (W + 2W?)l dx
+2 1-) J L (w Mj

i=O i=0

The solution methodology employed is described below, and it involves two

solution schemes, one for finding equilibrium positions up to the limit

point and one past the limit point.

First, a generalization of Newton's method [27,28], applicable to

differential equations, is employed to reduce the nonlinear field equations,

Eqs. (3.42)-(3.45) and appropriate boundary conditions to a sequence of

linearized systems. In this method, the iteration equations (linearized

system) are derived by assuming that the solution can be achieved by a

small correction to an approximate solution.

For finding pre-limit point equilibrium positions, the applied load

level, N is taken as known, the linear (n=O) solution is taken to be

the approximate solution, and the small corrections (in W,'s, and fi's)

are obtained through the solution of the linearized (with respect to the

corrections) differential equations. Note that, in this range, the stiff-

ness matrix is positive definite.

For finding post-limit point equilibrium positions (in a range of

negative stiffness matrix), the numerical scheme is modified. The load

50



parameter, is taken to be unknown, and one of the displacement para-

meters Wi replaces it as a known parameter. Great care must be exercised

in choosing this Wi . This is done by observing how the various Wi's

change with Nxx changes in the pre-limit point range, and choosing a

that tends to increase in a smooth and continuous manner, but most

importantly is one of the most dominant displacement terms. In this post-

limit point range, the linear solution cannot be taken as the initial

estimate for the needed iterations. Therefore, the last converged, pre-

limit point solution is used as an initial estimate for finding the first

post-limit point solution. From there on, in this same range, the previous

solution is utilized as an initial estimate. Needless to say that this

latter procedure may also be used in the pre-limit point range, starting

near the undeformed position. Unfortunately, this procedure is not very

economical with regard to computer time and, therefore, it is very inef-

ficient in this range.

It is decided to increase the number of dependent variables from

(3K + 1) (W, Wl,...WK9 fl' f2K) to (6K + 2) (Woo, V...WK, fl...,f W

lot l''""IK' gl'"-' 2K

where
i W i  1 0, 1, 2,...,K

and (3.54)

= f j 1 1, 2,...,2K
.j j

The reason for this reduction of the order of the field equations, but

increase of the number of the field equations, is related to the solution

scheme, which is based on the finite difference procedure. In finite

differences, it is convenient to keep the order of differential equations

as low as possible (first and second order preferably). Then, the
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linearized (in the increments) field equations, Eqs. (3.43)-(3.45), the

transformation equations, Eqs. (3.54), and boundary terms, can be written

in matrix form, as shown below:

Field Equations

[R] [Z" + CS] fz] + T) z] (] (3.55)

Boundary Terms

Ei) 1z) + ETI (z) - 19 (3.56)

where [Z) is the vector of the (6K + 2) unknowns. Note that when the load

parameter is considered as a known term, then

(Z] T . Wo,W0 , f2. ff.., (3f2,ol,...,PKtlt,..,2K (.57)

On the other hand, if a certain W (chosen dominant term) is considered

as a known term, this W is removed from vector [Z), Eq. (3.61), and it

is replaced by the load parameter.

Also, note that [R], S], CT], [S], i], {g), and [g) in Eqs. (3.55)

and (3.56) contain known terms (associated with initial approximate

solution and applied known increments). The ordinary differential

equations are next cast into the form of finite difference equations.

Thus, the linear differential equations, Eqs. (3.55) and (3.56) are

changed into a system of linear algebraic equations. The usual central

difference formula is used at all mesh points, A, i.e.,

-Zt (Z + -Z l

(3.58)

Z A =  (Z - 2Z + Z . 2

52



Note that, since the second derivatives in Wi and fi are taken as indepen-

dent variables, Eqs. (3.54), the second of Eqs. (3.58 is only applied to

the fourth derivatives of Wi and f V

By using one fictitious point outside the cylinder at each end, one

obtains a system of (6K + 2) X (NP + 2) linear difference equations.

(Note that NP stands for number of mesh points.) These equations are

solved by an algorithm which is a modification of the one described in

£29]. A computer program has been written for the Georgia Tech high

speed digital computer CDC-CYBER-70, Model 74-28. The listing and flow

chart are given in the Appendices B and A respectively.

In generating data, in order to investigate pre- and post-limit point

behavioral response of axially loaded cylindrical shells, the solution

procedure goes as follows: first, the system of equat ons is solved for

a small level of the applied load, Nxx, (taken as known). Then, solutions

are sought for step increases in Nxx, until the process fails to converge.

The load level at which the solution fails to converge is a measure of the

limit point or critical load (see £25]). As explained in [25], when

approaching the critical load, the increment in the applied load must be

small and the sign of the determinant of the coefficients of the response

must be checked. If convergence fails, the load level is over the limit

point. But if convergence does not fail and the sign of the determinant

changes from what it was at the previous load level, then the load level

is also over the limit point. Desired accuracy can be achieved by taking

smaller and smaller increments in N xx Note that a cost penalty must be

paid for improving the accuracy in Nxx or by this approach. It is also

observed that by employing this procedure (algorithm in which N is
xx

known and the response, W., f,, is unknown), no solution can be obtained
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past the limit point. Because of this, the new algorithm is employed

at this point of the solution procedure. The new algorithm, as already

explained, simply changes the role of one of the displacement terms with

that of the applied load Nx. While the first procedure is followed,

the most dominant displacement term is identified (or a group of terms).

At some level before the limit point, the procedure is switched and a

solution is formed that corresponds to an increment in the chosen dominant

displacement parameter. To this end, the previous solution is used as an

initial solution. The procedure is continued until the entire post-limit

point response is obtained. During this phase of the solution procedure,

some convergence failures can also occur. These failures can be attributed

to one of two reasons: (a) either the increment in the dominant displace-

ment parameter is too large or (b) the NP (number of mesh points) is too

small for an accurate description of the response. Both of these can

easily be corrected. In this second phase, large increments are purposely

used in order to save computer time. If the solution fails to converge,

then the increment is automatically reduced.

Numerical integration is used to find the total potential and end

shortening. By this solution procedure, the entire load-displacement or

load-end shortening curves can be obtained for a given imperfection and

each wave number n.

Numerical Results and Discussion

Numerical results are obtained for two geometries, one unstiffened

and one stiffened, for axially loaded cylindrical shells.

The geometry for both is described below:

(a) Unstiffened Cylindrical Shell

R - 4 in., t - 0.004 in., 0.008 in., 0.016 in., 0.050 in.;
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L 4 in., 12 in., 20 in., 40 in.;

6
E = 10.5 x 10 psi; v - 0.3; with (3.59)

0 F 2"xW (xy) - t -cos + 0.1 sinL11E cos
LL R

and SS-3 Boundary Conditions, Eqs. (3.32)

(b) Ring and Stringer-Stiffened Cylindrical Shell

R - 4 in.; t - 0.04 in.; L - 4 in.,

e - + 0.24 in.; e - + 0.12 in.; (+ for internal stiffeners)

E - 10.5 x 10 6psi; v - 0.3; (3.60)

Xxx - 0.910; Xy - 0.455; pxx W 100; Pyy M 20; with

W 0 h sin cos ; SS-3 Boundary Conditions, Eqs. (3.32)

(x,y) L R

Before discussing the results, a few more clarifying remarks about the

geometry are needed. The unstiffened geometry is taken from [25) and

[30]. Note that in these references only the critical load is given and

not the complete behavior. This geometry employs, virtually, an axisym-

metric imperfection. Note that the non-axisymetric amplitude is 10% of

the axisymnetric amplitude. A smaller value was tried (1% for the non-

axisyumetric amplitude) and the response (see Fig. 3.2; R/t - 500) is,

for all purposes, identical to that of geometry (a). The only difference

is the value for Nxx (limit-point load). This difference only reflects
cr

the effect of mperfection amplitude, i.e., for F - 1, N xx 12.24 lbs/in.
cr

for 1% non-axisyimetric amplitude, while N - 11.44 lbs/in, for 10%XXCr

non-axisymmetric amplitude. Note that, in the former case, the maximum

imperfection amplitude in 1.01h while in the latter it is 1.10h. The
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Fig. 3.2 Effect of the Asymmetric Imperfection
Amplitude (R/t = 500; L/R 1 1; n = 10).
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classical load for this case is 25.42 lbs/in. The reason that the 107.

amplitude is used in the numerical results obtained is that the higher

the non-axisyuaetric amplitude, the faster the solution. Moreover, in

this geometry, is varied from zero to four, in order to study the effect

of imperfection amplitude. Note that for the chosen imperfection,

W m/h - 1. l (3.61)

Finally, results are generated for several values of n (number of circum-

ferential full waves). This is needed in order to obtain a clear picture

of the complete response.

The stiffened geometry corresponds to examples 14, 16, 18, 19, and

21 of [25). Again, note that in [25], only limit-point loads were

obtained. Moreover, in E25], SS-3 boundary conditions are used, but

with Mxx -0 [see Eqs. (3.37)]. In the present work, SS-3 with Hxx

apxx boundary conditions are employed [see Eqs. (3.32)]. In addition to the

difference in SS-3 boundary conditions, difference in response for the

stiffened geometries lies in the fact that a term (a2Nx ) is missing from

Eq. (20a) of [25]. This omission has been corrected in the present work

[see Eq. (3.42)). The most important results are presented in graphical

form and tabular form. In the ensuing discussion, including conclusions,

the statements are based on all generated data.

Tables 3.1 and 3.2 present the various unstiffened geometries for

which results are obtained (axial compression). Table 3.1 also gives

values of critical static and dynamic loads, as well as minimum post-limit

point loads and the linear theory (classical) static critical loads.

Finally, for each example, it gives the number of mesh points used in

the finite difference scheme and the value of n. Table 3.2 sumarizes
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the most important results of the study for axially-loaded unstiffened

geometries.

The generated data, appearing in Tables 3.1 and 3.2, are also

presented in graphical form and a discussion of the various effects is

presented. First the results corresponding to R/t 1 1000 are presented

and discussed. For this group, L/R is equal to one.

Fig. 3.3 is a plot of N versus average end shortening for 0.5
xx

(unstiffened geometry). These data are generated for several values of

full waves, n, around the circumference. From this figure, it is clear

that, as the system is loaded quasi-statically from zero, the load deflec-

tion curve is the same and independent of n. The limit-point load, N
cr

is definitely n-dependent. It is observed that the value of the total

potential corresponding to the lowest limit load and associated n is the

smallest of all values corresponding to the same load and different n's

(at an equilibrium position). For this value of (which corresponds to

W°  = 0.55 h), the limit point occurs at N = 16.61 lbs/in. EX =
max xx

N / = CZ 0.653. In the post-limit point region, the unstable
\cr XcL

branch shows several changes from n = 13 to n = 12 to n = 11. These

changes occur at the unstable portion of the curve. The change from n = 11

to n = 10, etc., to n - 8, occur at the stable portion of the curves. This

implies that if one can transverse the post-limit point branches, he would

move along the n - 13 (with decreasing load) curve, then along the n = 12

and n - 11 curves (with decreasing load). Then, along the n = 11 curve,

the system moves with increasing load until it reaches the n - 10 curve.

Then it moves along the n - 10 curve until it intersects the n = 9 curve,

etc. In reality, though, under dead weight loading, the system reaches

the limit point, and then it snaps-through (violent buckling) towards
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far stable equilibrium positions. During the snapping process, it is

clear from this figure that the shell experiences changes in the circum-

ferential mode, corresponding to various n-values. This phenomenon has

been observed experimentally through high-speed photography for very thin

and relatively short cylindrical shells.

Fig. 3.4 presents similar data (as Fig. 3.3), but for = 1. The

behavior is very similar to that corresponding to 0.5. Note that

curves corresponding to n - 13,...,8 are shown. Data are generated for

n - 14 and 15 but are not shown on the figure. No data are generated for

n < 8, because the minimum load (in the post-limit point region) positions

correspond to n = 9 for both -values (Figs. 3.3 and 3.4). Clearly, the

same observations are made concerning violent buckling with changing

circumferential mode. Moreover, data are generated for t = 4 and plotted

on Fig. 3.5. Note that for n 10, there is no limit point instability,

but for n = 9, 8, and 7 there exist limit points. The response, though,

as the system is loaded quasi-statically from zero, is along the n = 10

path ard snapping takes place at the load level corresponding to unstable

bifurcation (the n = 10 and n = 9 paths cross). Even for this imperfection

amplitude ( = 4), violent buckling is predicted with change in circumferen-

tial mode. Finally, for the unstiffened geometry, Fig. 3.6 presents the

effect of the imperfection amplitude, t, on the limit-point load, X =

N IN , and on the minimum load, Xm N m IN • It also presents
Nxxc xxc XXmin X~c

dthe effect of imperfection amplitude on the dynamic critical load, X

for the case of constant load of infinite duration. This effect is

discussed in a later section. Note that N corresponds to the minimum
XXmin

equilibrium load in the post-limit point region. As it can be seen from

Fig. 3.6, the shell is extremely sensitive to initial geometric imperfections
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....

(of virtually axisymmetric shape). Note that at 0.84, X is equal to

0 0one half. Since W°  .lt h, then X 0.5, when W 0.924 h. At
max max

3.5, X 0.1, and at 4 the values of X and Xm are almost the

same. This means that for z > 4, there is no possibility of snap-through

buckling. The cylindrical shell simply deforms, with bending, from the

initial application of the load. Finally, Fig. 3.7 presents a composite

of Figs. 3.3-3.5, and it includes pre-limit and post-limit point behavior

for = 0.5, 1.0 and 4.0.

Fig. 3.8 is similar to Fig. 3.4 but for R/t = 500. Moreover, Figs.

3.9 and 3.10 fall in the same catagory. These geometries correspond to

Examples 22-40, which along with Examples 8-13 serve to study the effect

of R/t on the shell response characteristics. Note that for all of these

examples, 7 = 1.0 and L/R = 1.

Clearly, from Fig. 3.8, it is seen that the response characteristics

of the shell are very similar to those corresponding to R/t = 1000 (Fig.

3.4). The only difference is that the wave number n corresponding to both

the limit point (n = 11) and the minimum post-limit point equilibrium load

(n = 8) are smaller than the ones for R/t = 1000. According to Fig. 3.4

these wave numbers are n - 13 and n = 9 respectively. Note from Figs.

3.9 and 3.10 that this trend continues as R/t decreases, and for R/t = 80

n = 5 corresponds to both loads. The composite response is shown on

Fig. 3.11.

Next, the effect of L/R is examined through examples 30-36, 41-49,

and 53-57 (see Table 3.1). All of these geometries correspond to 1

and R/t - 250, and L/R varies from one to ten. The results of this study

are presented graphically on Figs. 3.9, 3.12, 3.13 and in the composite

of Fig. 3.L4. It is seen from these figures that as L/R increases, the
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entire static equilibrium response corresponds to one wave number (n = 4

for L/R = 5, n = 3 for L/R - 8 and 10). Note also that the n-value

decreases as L/R increases. This result seems reasonable. In addition,

the sensitivity of the shell decreases as L/R increases. This latter

effect is better shown on Fig. 3.15. The dynamic results are discussed

in a later section.

Finally, Fig. 3.16 presents the effect of R/t on the limit point

load, minimum post-limit point load and dynamic critical load. There are

two sets of curves, one solid and one dashed. The solid curves correspond

to 1 1 and they imply change in the imperfection amplitude as R/t

changes, since the data are generated for a constant R value (4 in.).

The dashed line set corresponds to the same imperfection amplitude regard-

less of the value of the thickness. Note that, when R/t = 1000, t = .004 in.

since R = 4 in. From the amplitude of the imperfection, one may relate

the solid curve to = 1 and the dashed curve to = 0.016/0.004 = 4.

Thus, it is very reasonable that X corresponding to = 4 is much smaller

than X o-responding to 1 f 1. On the other end of the curve, say R/t

100, the opposite is true. For this value of R/t, t = 0.04 in. Then

.016 £%
the dashed line curve corresponds to 0 = ,- ' or = 0.4, and X corres-

ponding to 0.4 is expected and is larger than X corresponding to

- 1.0 (solid curve).

For the stiffened geometries, the results are presented on Figs. 3.17-

3.19.

The classical values for Nx are 35,220 lbs/in, for external position-

ing of the stiffeners and 19,790 lbs/in. for internal. The geometric

imperfection for the stiffened geometries is not axisymmetric but symmetric

with respect eo y [see Eqs. (3.64)]. This shape is similar to the classical

buckling mode, provided that n - 4.
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The results for the external positioning of the stiffeners are

presented on Figs. 3.17 and 3.18 for g equal to one and four respectively.

It is seen from these two figures that the response is similar to the

unstiffened geometry (Figs. 3.3-3.5), but the number of full circumferential

waves is smaller (this is an effectively much thicker thin shell). Note

that the lowest limit point corresponds to n - 4 for -1. On the other

hand, for 4, the mode changes from n - 4 to n - 3 and snapping occurs,

because of the existence of an unstable bifurcational branch. In this

case also, a chcrge in mode is observed during snap-through buckling.

Another important similarity to the unstiffened shell behavior is that

this configuration is sensitive to initial geometric imperfections. Note

that when 1 1 (which means that W = h), N - 26,200 lbs/in. or
max xxcr

X 0.46. The externally stiffened shell is not as sensitive as the

unstiffened thinner shell, but it is sensitive to initial geometric

imperfections.

The results for the internally stiffened configuration are shown in

Fig. 3.19. The dashed lines correspond to n - 4 and the solid lines to

n - 3. Data for other n-values need not be shown on this figure. The

three sets of curves correspond to 0.5, 1, and 4. Note that, for

0.5, limit point instability occurs at N - 17,800 lbs/in, with n - 4.xx

Also note that during snap-through buckling, a change of circumferential

mode occurs (to n - 3). The minimum equilibrium load in the post-limit

point region corresponds to n = 3. On the other hand for 1, snap-

through buckling occurs at N " 16,400 lbs/in, because of the existence
xx

of an unstable bifurcated branch (corresponding to n - 3). The minimum

equilibrium load for I - 1 also corresponds to n - 3. Finally, there is

no possibility of a snapping phenomenon for = 4, neither through the
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existence of a limit point nor through the existence of an unstable

bifurcated branch. It is observed that this configuration is not very

sensitive to initial geometric imperfections. For = 0.5, X = 0.9

and for = 1.0, A 0.84. This is attributed to two reasons: (a) inter-

nally stiffened configurations are less sensitive than externally stiffened

ones and stiffened configurations are less sensitive than unstiffened ones,

and (b) for this reported case, SS-3 with Mxx = a3Nxx boundary conditions

are used, which has a stabilizing effect. The primary reason, though,

is the former.

Numerical results are also obtained for a ring-stiffened geometry

under pressure. This is the same as Example 1 of Ref. 31.

(c) Ring-Stiffened Cylindrical Shell

L = R = 4 in.; t = 0.04 in.; E = 10.5 x 106psi

v0.3; e X 0; X = 0.91; pyy = 100;

(3.62)

ey = 0.24 in.; classical p cr 4827 psi

0 = t sin 1 + 0.1 sin cos Ey;
W (x,y) \ L R O

f 0.1, 1.0 and 4.0.

The results of this study are presented in graphical form on Figs. 3.20-

3.22.

Fig. 3.20 shows a plot of the pressure, p, versus the average end

shortening for = 1 and n - 3. There are three plots shown on this

figure which serve to check the effect of K [see Eq. (3.40)3 and the

number of mesh points, N.P., on the convergence of the solution. This

effect, as characterized by Fig. 3.20, is typical for all and n values.
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Clearly, neither effect is significant for pre-limit point behavior and

post-limit point behavior up to the minimum load. Beyond this range, the

effect of NP is very small, while the effect of K can be significant.

Therefore, if one is interested in the response characteristic up to the

minimum post-limit point load, both effects are insignificant. In this

particular study, one is interested in establishing limit-point loads

(critical static loads) and dynamic critical loads which depend on

accurately predicting the response in the unstable portion of the post-

limit point behavior. (The value of the modified total potential goes

to zero in this range if a critical dynamic load exists.) The conclusion

is that K = 1 and NP = 35 suffice for this study, since the cpu time

increases rapidly with increases in both K and NP.

Fig. 3.21 shows the effect of n for = 1. This effect is the same

for the other § values, and n = 3 characterizes the true response of the

ring-stiffened shell. Fig. 3.22 shows the response of the shell for all

three values of (and n - 3). Note that for 0.1 and 1.0, the shell

expands in the axial direction (negative end shortening) up to the limit

point and then it starts to contract. For 4, initially there is an

expansion, but contraction commences before reaching the limit point.

Note also that this configuration is rather sensitive to initial geometric

imperfection (for t - 0.1, XA = .94; for - 1.0, X = 0.80; for g - 4.0,

= 0.59). Note also that the agreement between the value reported

in Ref. 31 for ) and - 1 and the present one is very good. Moreover,

the value of n (-3) is the same for both.

Critical Conditions for Sudden Application of the Loads.

As stated previously, a critical dynamic condition exists if the

modiiied total potential, UT , becomes zero at an unstable static equili-

mod
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brium point and motion can escape through this point. (A trajectory can

possibly exist for "buckled" motion.)

For the axially-loaded unstiffened geometry, the results are presented

both in tabular form (Tables 3.1 and 3.2) and in graphical form (Figs. 3.6,

3.15 and 3.16).

The critical dynamic load is obtained from the static solution. It

corresponds to a load (static) for which the unstable (post-limit point

curve) equilibrium point yields a value zero for the modified total

potential. The expression for the modified total potential is given by

[see Eqs. (3.16) and (3.19)]

U W TLN 2 + 2Tr~aN2
Tmod T E xx xx

P

(3.6)
M UT + TRLaN2

It is seen from Tables 1 and 2 that when a limit point exists and

the difference between the limit point load and the minimum post-limit

point load is distinct, then a clear dynamic critical load exists. On

the other hand, if there is no limit point (Examples 17-21 of Table 3.1),

there is no critical dynamic load. Similarly, if the value of the limit

point load is very close to that of the minimum post-limit point load, it

is difficult to have a critical dynamic load (see Examples 35, 36, and

39 of Table 3.1). Fig. 3.6, among others, shows a plot o! Xd versus the

imperfection amplitude parameter, . On the basis of the definition of

critical dynamic load, Xd starts from one and decreases to the common

value of XA and Xm at t - 4. Since the static behavior for § > 4, is not

one of limit point instability, then there is no critical dynamic load for

these t values, according to the concept and criterion discussed at the
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beginning of the chapter [see Eq. (3.2)]. On the other hand, if the

dynamic response is limited in the space of the displacement components,

then a critical load can be defined. This point is discussed in Ref. 1

and in Chapter 5 of the present report.

The effect of L/R is shown on Fig. 3.15. The value of Xd is very

d

low for L/R equal to one (Xd  0.2) and it increases rapidly with increas-

ing L/R values to X f .48 at L/R = 10. This, of course, holds true only

for r - 1.0, but a similar behavior is observed for -values for which the

static behavior is the same as for 1.0 (see Figs. 3.3 and 3.4; but not

3.5).

For the axially-loaded stiffened configuration, the results are

presented on Fig. 3.23. It is seen from this figure that the internally

stiffened geometry (under static conditions) is not as sensitive as the

externally stiffened one. Moreover, the ratio of the dynamic load to the

static ( d/A ) is higher for the internally stiffened geometry. Note that

the results for the internally stiffened geometry do not extend past 1.0.

This is so because the atatic behavior will soon ( = 1.5 or so) cease to

be of the limit point instability. On the other hand, the results for

external stiffening extend to 4.

d A
It is seen that the largest difference (or smallest ratio \X/\ )

between the static and dynamic critical loads occurs at " 1.0 (see Figs.

3.6 and 3.23), for axially loaded geometries.

For the pressure-loaded ring-stiffened geometry, critical dynamic

loads are obtained by setting the modified potential equal to zero rsee

Eq. (3.2)]. For this case,C, for a given load, denotes the potential

associated with the static primary path mode. This means that the corres-

ponding st,,tic problem must be solved (without allowing static buckling)
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with regard to static application of the pressure and by finding the

corresponding axisymetric displacement (breathing mode). Then at each

level of the pressure, the corresponding total potential is calculated

and for each value of p this corresponds to the value of C in Eq. (3.2).

The estimated results for dynamic critical pressure along with the

limit-point values and the minimum post-limit point values are shown on

Table 3.3. Only results corresponding to n - 3 are shown, because this

value of n governs static and dynamic building.

Table 3.3 Pressure-Loaded, Ring-Stiffened Cylindrical Shell.

n ps p psi P psi pd/p

3 0.1 4,500 4,470 3,000 0.9933

3 1.0 3,845 3,790 2,970 0.9857

3 4.0 2,830 2,755 2,740 0.9735

It is seen from these results that the reduction in critical pressure,

because of the sudden application (dynamic versus static), is very small.

This should not be considered as a general conclusion, but more data need

to be generated.
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SECTION IV

THE PINNED HALF-SINE ARCH

In this particular chapter the concepts of dynamic stability are

applied to a half-sine low arch, subjected to a transverse load with

a half-sine apatial distribution. The static analysis of such an arch

may be found in Ref. 32. Some dynamic stability aspects of this or

similar geometries may be found in Refs. 2, 11, 33, 34 and 35. In this

chapter some of these studies are summarized, particularly those of

Refs. 2, 11, and 35. These studies include loads of constant magnitude

and finite durations (as well as the extreme cases of the duration time

approaching zero and infinity), and the study of various effect, all of

which are presented in Ref. 1. These include, the effect of static pre-

loading and small damping.

Geometry and Governins Equations

Consider a slender arch of small initial curvature and synmetric

cross section. Furthermore, w (x) denotes the initial shape of the middle
0

line, w(x) the shape of the middle line after deformation, and u(x) the

horizontal displacement of any point of the midplane (see Fig. 4.1). The

following nondimensionalization is introduced

L
T

w(x,t) - pq (g,t) where p

t a T- L/_ where cE - (T p/L)2  (4.1)

and E is the Young Modulus and q(g,t) 2 Q (xt)AE2
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where Q (xt) denotes the external force per unit length.

The specific problem to be considered in this section consists of a

low pinned arch for which w0 (z) nd consequently 1 o(9) is a half-sine-wave.

The distributed load, which is applied suddenly with constant magnitude for

a finite duration, ro , is also a half-sine-wave. The initial shape is given by

1) e a sin C 0 < C < Tr (4.2)

where e is the initial rise parameter. Since (wo) = p • and e -
max

038o ,and if the cross section is rectangular of width b and thick-

ess3h, thenhp and =23 h ,which clearly shows that • is a

measure of the ratio of the initial maximum rise to the thickness of the

arch.

The expression for the loading is given by

q( -,r) q,(T) sin C (4.3)

The response of the arch, J(g,t) is represented by

2
J1(C,t) - 1o(g)+ E a (t) sin Ig, 0 < C < T, r > 0 (4.4)

Complete analysis of the problem is given by Simitses in references 11 and

32.

A more convenient set of equations may be obtained by introducing the

following new parameters

r -a + e and p -=ql + e (4.5)

the expression for the nondinansionalized total potential under p
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O .4T where UT the total potential under the load q, and PE =

2 E E
denoting the first Euler load) is given by

L2

L

jj..2 2 2)2 +2 2 2
OT 1(r - e + 4 a 2 ) + e + 16a2 + 2p(e-r) (4.6)

which is quite similar to the potential energy for the two-degree of freedom

model (Model C) discussed in Ref. 1.

Furthermore, neglecting the rotatory and in-plane kinetic energies,

the following expression for the nondimensionalized kinetic energy

(T is the kinetic energy) is obtained.

2
-T 2 Io dt (4.7)

0

Use of Eq. (4.4) in Eq. (4.7) yields the following expression for

o2+o2 ,2 o2(48r a2+02=( + a'2) 02 (4.8)

2 2

where (%u)- and ( 0 d

Critical Dynamic Conditions

Dynamic Stability tinder constant load of finite duration has been

discussed in Ref. 1 and through simple mechanical models, criteria and

estimates for critical conditions were presented. The same problem is

posed here, but applied to a pinned low arch.

The expression for the "zero load" total potential is given by

2e .(& 2 2 + ) 2 a2 2 2- E 8 (r + 2er + e + 8) + a2 (2a2 + r + 16 -e 2 ) (4.9)
, 8 2 2
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Through a static stability analysis, the following stationary points on

the "zero load total potential" are obtained:

Pt. 1 at le,O] Stable (Relative min.)

Pt. 2 at [ (-e +le 16), Unstable (Relative max*)

Pt. 3 at [2(e + kI6), Stable (Relative ain.)

Pt. 4 at 3 29 4] Unstable (Saddle point)

Pt. 5 at I 4] Unstable (Saddle point)

It is proven (Ref. 11) that saddle points exist for e > 4. For this

range of e-values, the "zero load" total potential value at the saddle

points, pts. 4 and 5 is smaller than the corresponding value at the

relative maximum, pt. 2. On the basis of this observation the motion

can possibly become "buckled" through the saddle points, pts. 4 and 5.

The corresponding condition for this case is a "possible critical con-

dition". On the other hand, if the imparted energy, by the applied force

at the release time, is sufficient to reach the relative maximum (unstable)

static equilibrium point, pt. 2, "buckled" motion is guaranteed and the

aorresponding critical condition is a "minimum guaranteed one". The former

is termed sufficient condition for dynamic stability while the latter

sufficient condition for dynamic instability by Hsu E6 - 10].

Next, the computational procedure for finding the possible critical

condition is outlined.

The stability criterion for this case (see Ref. 1) is expressed by

;o UTo - Po (Lu) (.0UT (4.10)5Ui

where L is the unstable static equilibrium point under zero load and Tou

the release time. The equality sign refers to a critical condition, while

the inequality sign refers to a dynamically stable condition.
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Use of Eq. (4.10) for this geometry yields

r T - (3 (4.11)

cr

where r is the critical release time.
cr

Moreover, for 0 < T < T 0conservation of energy yields (during this

time the system is loaded)

(4.12)

IT

For a given path of motion, integration of Eq. (4.12), yields a relation

between the time of release and the position at that instant. Note, that

the problem has been cast in the following terms: for a given load, p,

find the smallest release time, To , such that the system may reach an
crunstable point (saddle point for the minimum possible critical condition)

with zero velocity, Eq. (4.11). Since one is interested in obtaining the

smallest release time, To P and since the position at the time of release
cr

is path dependent, one can solve the problem by considering the associated

brachistochrone problem. The brachistonchrone problem makes use of Eq. (4.12)

for this system, and through its solution one obtains the relation between

the smallest release time, T , the position at the instant of release,
cr

as well as the path that yields - . The details of the solution to this
cr

brachistochrone problem are similar to the ones presented in Ref. 1. for

the two-degree-of-freedom model, Model C. The solution to the brachisto-

chrone problem yields that the minimizing path is characterized by a2 0

(symmetric path) and the relation between T and the position of the
cr

SystuM, rcr, at TO 0 s
cr
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cr

dr
cr 2 2 1 2 22

i/e2p(r -e)+e r-i(r e

Computationally, it is simpler for one to assign values of rcr (starting

with values close to the initial position, r - /- and a2 - 0), solve for

p through Eq. (4.11) and then for r through Eq. (4.13).
cr

Note that for the case of the minimum guaranteed critical condition

Eq. (4.11) is replaced by a comparable equation which employs the value

of the "zero load" total potential at the relative maximum unstable static

point.

Numerical results are presented graphically on Figs. 4.2 and 4.3, for

the minimum possible critical condition only, and various values of e. The

curves of Fig. 4.2 depict critical conditions in terms of applied load, p,

versus critical release time, T0 . One may observe that as the r0°  in-

creases, the corresponding load approaches, asymptotically, the value of

pcr for the infinite duration time. Fig. 4.3 presents the sme results as

Fig. 4.2, but in terms of (pr0) cr versus critical release time r°0 . Note
cr

that as ro approaches zero, the value of (pr approaches that of the
crr

critical ideal impulse (see Ref. 11).

Effect of Static Preloadina

In evaluating the effect of static preloading, three values are

chosen (e - 5.0, 6.0, 8.0), and for each e-value the system is initially

loaded quasi-statically with a po- load smaller than the Pcr - static.

Then, the system is loaded dynamically. The following values are used in

the dynamic analysis.
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e - 4.5 ;Pstc r -6.18 ; Po = -1.0, -3.0, -5.0

e = 5.0 ; - -9.0 Po = -2.0, -4.0, -6.0
cr

e - 6.0 ; -13.41 P o -3.0, -4.0, -6.0
cr

First, the extreme cases (To . 0 and To co) are analyzed by

employing the proper energy equations (see Ref. 1, Section 6).

For example, for the ideal impulse case, the impulse is related
-PO

to an initial kinetic energy, Ti (the impulse is imparted into the

system as initial velocity) and from conservation of energy (for the

preloaded system)

P P P P P-T0 + TT° 0 (L s0 ) + 0 (4.14)

P
where L 0 is the near static (stable) equilibrium position under P0

(static preloading). Then Tis critical (and the corresponding ideal

impulse) if the system can reach the unstable static equilibrium point,

LP with zero kinetic energy, or
u

P -P P P P

i T (Lu UT° (Ls ) (4.15)
cr

For the second extreme case (T o n), Pcr may also be obtained from

energy consideration and the criteria developed in Ref. 1. The charac-

teristic equation for this case is obtained from

i .~Po +P P L +P Po + p po

UT 1L )-u ILO0I4.6OT o T (4.16)

The ideal impulse, (p'r ) may be related to the initial kinetic energy
P0

- O
T (in the nondimensionalized form - see Refs. 2 and 11) by the expression
i
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(pi-r - j0 (rP 0l/2 (4.17)

where r5 is the near static (stable) equilibrium position wnder load

Po.

The critical ideal impulse, through Eqs. (4.17) and (4.15), is

obtained by

o c - (rP j Po) 1/2

(pr) -u -OOro UO (4.18)

Note that the negative sign on the right hand side of Eqs. (4.17)

and (4.18) is present because of the sign convention on the load p (see

Fig. 4.1). The expression for the total potential is given by Eq. (4.6).

The numerical results are presented on Table 4. 1.

Table 4.1 -Critical Ideal Impulse, (pT o)c

e 4 .5 e 5. e 6.

(PT________________________ P_______________________________________

P100(TOc



Note that the first row gives the ideal impulse without static pre-

loading. Note also that, as the value of p0 approaches the value of

the static critical load, the additionally imposed critical impulse

tends to zero. This is reflected by the results of the last row

(Table 4.1).

The critical load for the case of infinite duration, p r is

obtained by the following steps, for a given e, p0 combination.

a) Solve the symmetric response equilibrium equation (see Refs. 2, 11,
P

32), given below, for r (near stable position)
s

(rs0 )  - (e2 - 4) rP = 4 p (4.19)
(r s (419

b) The static unstable (saddle) equilibrium positions are characterized

by (see Ref. 32)

P +p
3

and a 2  1 Ee 2  ( P 16] (4.20)
4 9

c) Eq. (4.16) for this system becomes

1 2 2 2 2 2

8 (r 2 + 4a2  e 2 ) + r - e + 16a2 + 2 (p0 + p) (e - r)

p2

1 P 2 P 2 + P
8 (rs° e ) + rs- e + 2 (p + p ) (e - r) (4.21)

P +P

The stimulaneous solution of Eqs. (4.20) and (4.21) yields r 0  and

pcr
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The numerical results for all e, p0 combinations are presented in

tabular form on Table 4.2.

Table 4.2 - Critical Dynamic Loads, pcr ' (Infinite Duration)
CD

• - 4.5 c - 5.0 e - 6.0

P P cr2  Po er0 # CP%+Pr P0  P P+P0 -r r r. c O 0 c cr o cr.

0 -3.1 0 -5.20 -. 2 01 -8.8 -8.7
1.0 -4.05 -5.05 -2.0 -5.54 -7.4 -30 -. 1 1.6

3.0 -2.54 -5.54 -4.0 -3.90 -7.90 -4.0 -8.02 -12.02

-5.0 -0.99 -5.99 -6.0 -2.24 -8.24 -6.0 -6.77 -12.77

-6.18 0 -6.18 -9.0 0 -9.00 1-13.41 0 -13.41

Note that the first row results of Table 4.2 are taken from Ref. 11.

The results of the last row reflect the fact that if the system is

loaded quasistatically up to the limit point, then the additional

suddenly applied load that the system can withstand tends to zero.

Finally, for the case of constant load. p. applied suddenly for

a finite duration, ' , critical conditions are obtained from the

following steps:
P P P

0 0 0a) From the static stability analysis obtain r a, r , and a2
u

for each p0.

b) Use of the energy balance for this model and load case [see Eq.

(6.9) of Ref. 1) yields
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p2 p2
0 1 0 2 0a 2

2p (r°0 - r a) = (ru  -e +4a 2 )

2 2 P2  2 p p
01 o. 2 6 0 o0

r + 16a 2O (r0 s e2) "rs + 2p (rs° -ru (4.22)
U

where r is the position r at the instant of release of the load pcr
( o" ). In Eq. (4.22), fora given geometry, e, and static load, P ,

o(r o andEq.o(4.22)ptforrPpPaP
00 0 0

everything is known (p0, e, rs 0 and s ) except for p and rcr.

Therefore, Eq. (4.22) relates p and r at the critical condition.cr

(1 + '2 dr\ 2

c) Since T a2 ) d ) , then from Eq. (6.4) of Ref. 1, one

may write

1

. +P P p +P 2
dT = LOTO (rs) - UTO (r, a2 )] dr (4.23)

Invoking the same techniques as the ones used for the same problem but

without static preloading in the previous case, the critical time T is
0

computed on the symmetric path a2 - 0.

Integration from T - 0 to T = T and use of the expression for the

total potential [see Eq. (4.6)] yields

r 2 2
crrl o 2\ 0  1 2 22 2

TOcr Li - e) + r. (r e) - r
r o

s

1

+ 2 (p + p (r - r dr (4.24)

Note that Eq. (4.28) also relates rcr to p.
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A critical condition is characterized by (p, To) that satifics both

0

equations, Eqs. (4.22) and (4.24) . This means that for a given release

time, To' find pcr or for a given p find ocr. Computationally, though,

it is easier to assign values of rcr, solve for p from Eq. (4.22) and then

for the corresponding 'o from Eq. (4.24).

A computer program has been written for these computations. Values
P

of rcr are assigned, starting with rs° + 6r, where 6r is very small, and

computing the corresponding values of p and T for each 8r.

The results are presented graphically on Figs. 4.4 - 4.9 for the

three values of e. On the first three figures, critical conditions appear

as plots of p versus duration time, T . Note that as .roc become larger°or cr

and larger, the corresponding value of p approaches pcr (see Table 4.2).

On the last three figures (4.7 - 4.9) critical conditions appear as plots

of (p) cr versus duration time, T . On these figures, as T - 0, theoc°cr °or

corresponding value of (p o)cr approaches the critical ideal impulse (see

Table 4.1).
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Effect of Small Damping

In this section, the effect of small damping on the dynamic stability

of the arch (subjected to a constant load of finite duration) is investi-

gated. If p indicates the damping coefficient, the dissipated energy D,

because of damping, is given by [see Section VII of Ref. 1 for concepts and

details]

L

D - p j- dw dA dx pA dw dx (4.25)
V Wt

where v stands for volume.

Recalling that w - p (10 (g) + r (T) sin + a2 (T) sin2 }, where
2 1

p and x , then Eq. (4.25) becomesT1

D = A (r sin + a 2 sin 2 ) (dr sin + da2 sin 2C) d (4.26)T

o r,a2

Since the symetric path (a 2  0) is the solution to the undamped system,

and since the integrand in Eq. (4.26) must contain only functions of the

undamped system, then D reduces to P

2 rcr T cr
D A irdr s 2 d LA frdr (4.27)

* e 0 e

The nondimensionalization of D is given by

-P
r

4D rrdrSPE CE Le
E E e

p PA 1E 7
where P C - a indicates the nondimensionalized damping coefficient,
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and (0) w vith T given in Eqs. (4.1).~I).

Since rcP is expanded in Taylor's series of p as

rP rP + r P 2)
c o c 1  (4.28)

r r r

P
and r stands for the critical r-coordinate for the undamped system. Then

r
Eq. (4.10) yields

2
P 8 e _ 2)

oCr e-p (4.29)
r e-p

However, the trajectory that the system follows, from the time of release

of the load until it reaches the unstable saddle point [r = = a LL "3 2=

2

e- 4) is unknown. Since Eq. (4.25) gives the dissipated energy

during this period of time as

e
32 ~ i 2
S( sin  § + a' sin2 2) Or dr d

r w
o cr

then by following the same procedure as in Section VII of Ref. 1 for Model

C, a conservative estimate for the critical condition is obtained by assuming

a symmetric path (a2  0).

Then, from Eq. (7.10) of Ref. 1

e

r P  err dr
1 c r 2 (4.30)

Moreover, assuming zero initial conditions, through the equation of motion,

Eq. (4.23), along the symmetric path (a2  0) for the undamped system, one

obtains
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02 "2 2
o p (e -') + - (2er -8) - 8 (e -8) (4.31)

where f r if r r cr and 1 = rcr if r > r cr. From Eq. (4.30)

e 2 21
pe 2p (e- r) + L- (2e - r2- 8) - - rdr

rp  (e- p) 8 (4.32)
r

In addition, the critical time T 0  may be found through Eq. (7.2) of Ref.
cr

1. Recalling that the kinetic energy is given by Eq. (4.8), the criti-

cal time T is given by0
cr

r dr

cr e2 re 2 0
T- 2p (e - r) + -- (2e r 8) -- (e -8) - xj xxdx

e

(4.33)

Expanding TO  in Taylor's series of p (p < < I) one may write
0cr

- 2S0r = + T r + 0()

Note that T is the critical time for the undamped system and it is0 0
cr

given by

r
o cr dr0 0 0 =r 0 (4.34)

Ser2 2
I-2p e - r) + T (2e -r -8) (e2 8)

Moreover, from Eq. (4.33), one may find the expression for iTo , or
cr
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r
r RxdxT 0Ocr

Tr •rSe 0 2 2 2 3/2

lo eIO 2 2_ 2 e
e -2p(e - r) + 1- (2e -r - 8) - (e-8)]

P 2 cr(4.35)

or 2 e2 2-
C-2p(e- or +r) + (2 e2 - r 2  8) - (- - 8)]0 cr 8 rc o r -8 -

where corrections lrcr and 1To depend only on undamped system parameters.
cr

The governing equations for finding critical conditions in the presence

of small damping (p < < 1) are Eqs. (4.29), (4.32), (4.34) and (4.35).

These four equations relate the given small damping coefficient , the

applied load p, the time parameters o o and 1 , and the position para-
p P cr cr

meters or> and rr. A critical condition is expressed in terms of a

load level p and the corresponding time T = oIo + P 1T . Thus, a
cr cr cr

critical condition may be found by posing the problem as follows: for a

given small dampjing coefficient p and load level p, find (through the

simultaneous solution of the four governing equations) the corresponding
critical time parameters, T and T o , and position parameters, r

p0 cr cr

and rr. Note that the range of p-values (assigned) must be greater than

dynamic critical load for the case of a suddenly applied constant !oad of

infinite duration, without damping. The computational procedure involves

hgsteps: (a) assign a p-value and computeor from Eq. (4.29),the followingstp:()asga -auancoptor rfoEq(42,

P
(b) employ Eq. (4.32) and solve for lrcr, (c) from Eq. (4.34) solve for

Tcr , and finally (d) employ Eq. (4.35) and solve for 1 T  .
°cr
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A computer program is written to accomplish the solution and numerical

results are generated for three values of the arch rise parameter e

(e = 4.5, 8.0, 12.0). These results are presented on Table 4.3.

Note that, since a critical condition corresponds to a set of p, T0
cr

values, a small damping coefficient p has a stabilizing effect, This

effect, though, is very small. For instance, at the high values of the load

p (say for e - 4.5, p - -119.00) the corresponding value for To  (if p = 0.04)
cr

is 0.098 + 0.0015 - 0.0995. Remember that the p - T curve for the un-
cr

damped system (see Fig. 4.2) is very steep at the high p-value and virtually

flat at the low values of p. On the other hand, when p = -7.21 (a value

close to Pcr M -6.18) the corresponding critical time is Tr = 0.59 + 0.04

= 0.63. Since the curve is very flat at this load p-value, one may conclude

that the effect of small damping is virtually negligible.
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I
Cable 4.3. Incremental Critical Time 1 T ( - I) for several Finite Duration

Loads, p. (pinned shallow Arch).

P 0 lo
.'r cr

4.50 -119.00 0.098 .337

- 57.00 0.134 .379

- 30.00 0.210 .446

- 20.00 0.250 .517

- 7.21 0.590 .970

8.00 -658.00 0.032 .450

-214.00 0.089 .514

-103.00 0.215 .620

- 75.00 0.293 .706

- 39.00 0.607 1.203

12.00 -561.00 0.053 .717

-274.00 0.092 .840

-179.00 0.183 .990

-115.00 0.527 1.380
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SECTION V

OTHER SYSTEMS

As explained in Chapter 1, it is possible to extend the concept of

dynamic buckling to all structural systems regardless of their behavior

under static application of the loads (see Figs. 1.1 - 1.5). This extension

is presented in Ref. 1, and it is based on limiting the deflectional response

of a structure (when loaded suddenly), which is in agreement with requiring

boundedness of deflectional response. One should observe that in limiting

the deflectional responses boundedness is automatically satisfied (in some

cases enforced), while the reverse is not true.

Some examples are presented in this chapter, in order to clarify this

exten.sion o- the concept of dynamic stability.

The Mass-Spring System

Consider the mass-spring (linear) system shown on Fig. 5.1. Consider

a suddenly applied load, P(t), applied at t = 0. This load may, in general,

include the weight (mg). In the case of finite duration, consider the

weight to be negligible.

First, the problem of constant load suddenly applied with infinite

duration is considered.
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For this case, one may write

the equation of motion and solve

for the response by imposing the

proper initial conditions.

k
k P (5.1)
m m

subject to m - x=O

91(o) - x(O) - 0 (5.2) P(t)

where the dot denotes differentia-

tion with respect to time.

By changing the dependent
Fig. 5.1 The Mass-Spring System

variable to

y = x + C (5.3)

where C is a constant,

the equation of motion and initial conditions become

k (5.4)
m

y(O) - - and j(0) " 0 (5.5)k

The solution is

P ry C - co t

and (5.6)

x= cog , t
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Note that

X -2P (5.7)

and it occurs at

- m
t T or at t ,--=T/2 (5.8)

where T is the period of vibration.

Note that if the load is applied quasistatically, then

Pat = kxst (5.9)

From Eqs. (5.7) and (5.9), it is clear that if the maximum dynamic

response, Xma x and maximum static deflection xst are to be equal and
max

no larger than a specified value X (deflection limited response) then,

P st - 2P dyn (5.10)

Because of this, many systems for which the design loads are dynamic

in nature (suddenly applied of constant magnitude and infinite duration)

are designed in terms of static considerations but with design (static)

loads twice as large as the dynamic loads, Eq. (5.10). Note that both

loads (Pt Pd ) correspond to the same maximum deflection X.

Next, this same problem is viewed from energy considerations.

First, the total potential, UTo for the system is given by

U 2k _ Px (5.11)

and the kinetic energy, T, by

T m()2 (5.12)
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Note that the system is conservative, the kinetic energy is a positive

definite function of the velocity (for all t), and that UT - 0 when x - 0.

Then,

U +T = 0 (5.13)
T

and motion is possible only in the range of x-values for which U is non-
T

positive (see shaded area of Fig. 5.2).

It is also seen from Eq. (5.11) that the maximum x-value corresponds

to 2P/k.

Note that the static deflection is equal to P/k [Eq. (5.9) and pt A

on Fig. 5.2]. Therefore, if the maximum dynamic response and maximum

static deflection are to be equal to X, then Eq. (5.10) must hold.

Now, one may develop a different viewpoint for this same problem.

Suppose that a load P is to be applied suddenly to the mass-spring system

with the condition that the maximum deflectional response cannot be larger

than a specified value X. If the magnitude of the load is such that

2P<X (5.14)
k

we shall call the load dynamically subcritical.

When the inequality becomes an equality, we shall call the correspond-

ing load dynamically critical (see Ref. 1). This implies that the system

cannot withstand a dynamic load P > T without violating the kinematic

constraint. Therefore,

p dync r .2 (5.15)

This extension of the energy concept of dynamic stability was first

ititroduced and discussed in Ref. I.
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Fig. 5.2 Total Potential Curves
(Suddenly Loaded Mass-Spring

System).
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Moreover, on the basis of this concept, one may find a critical

ideal impulse. The question, in this load case, is to find the ideal

impulse such that the system response does not exceed a prescribed value

X. From Fig. 5.2 and conservation of energy

UO + T - T (5.16)

TTi

~and T i is critical if the system can reach Position D with zero velocity

(kinetic energy). Thus,

Ti L0 (D) - U? (X) (5.17)
cr

From the impulse-momentum theorem, the ideal impulse, Imp, is

related to the initial velocity and consequently to the initial kinetic

energy.

Imp = lim (Pto)0 & i  (5.18)
t -0 00

where i is the initial velocity magnitude (unidirectional case) and to

is the duration time of a square pulse.

From Eq. (5.18)

(5.19)

and use of Eqs. (5.12) yields

2T 1/2
i - (5.20)

Since the critical initial kinetic energy is given by Eq. (5.17),

then

Imp (k) I 2 X (5.21)
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Next, the following nondimensionalized parameters are introduced

2P uixji

(5.23)

2U
- T - 2T ;-o 21mp

UT 2; =; Ip
kX XA

On the basis of this Eq. (5.21) becomes

Impcr = 2 (5.24)

Finally, the concept of dynamic stability is next applied to the

general case of a suddenly applied load of constant magnitude but finite

duration, t . The precise statement of the problem is: find the load,
0

P, for a given duration time, t (or vice versa) such that the maximum
0

deflection is no larger than a prescribed value, X. Note that the

extreme cases of to-.O and - have been dealt with separately, and that

for this case, P must be greater than P [see Eq. (5.15)].
dyn c

For this load case and system, conservation of energy yields

u+ - 0 t to  (.25)
T (525

and

+ T, - C t > t (5.26)

P 

where C is a constant. This constant can be expressed in terms of U and
T

U T values at the instant of release, to. Since there exists kinematic

continuity at to, TP(t o ) 0 T°(t 0 ) then

C i T(to ) - U (t o ) (5.27)
T o To0
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and

if + T T - (t U (to ) (5.28)
T To To0

A critical condition exists if position X can be reached with zero

velocity (kinetic energy). Thus, from Eqs. (5.28) and (5.11)

1 2
I Px(t) Pxcr (5.29)

where xr is the x-position at the instant of release.

From Eqs. (5.25), (5.11), and (5.12) one may write

1 2 1 .230
1 x Px + _m() 2  0 0 tt (5.30)

2 2 0

or

Sk _2 /2 (5.31)

From this one may write

dx
dt " x (5.32)

(Lx- 1

Integration from zero to to yields an equation that relates to, x(to)
0 0 0

and P.

t SoX(cr - (5.33)

Eqs. (5.23) and (5.29) are two equations that relate P, Xcr , and to .

A critical condition is expressed in terms of either Per for a given to

or t for a given P-value.
cr
Computationally, it is simpler to assign values of x cr from zero up

X, , and solve for the corresponding P from Eq. (5.29) and for t from

Eq. (5.33).
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Use of the nondimensionalized parameters, Eqs. (5.23), yields the

following system of governing equatiuns

Pcr

and (5.34)

tcr d
0~j 0 (p t2)1/2

Note that the first of Eqs. (5.34) corresponds to Eq. (5.29) and the

second to Eq. (5.33). Moreover, the value of cr varies from zero to one.

The simultaneous solution of Eqs. (5.34) yields

p = 1/cr and T cos 1 - 2 r (5.35)
cr

Note that as tcr approaches one, T is equal to half the period
cr

of oscillations and p - 1, which is the value that corresponds to the

case of constant load suddenly applied, with infinite duration rsee

Eq. (5.15)].

The results are shown graphically on Fig. 5.3, as plots of p versus

t /T or T /2T.

0 0

Parenthesis

Eq. (5.29) may be interpreted in a different way. For instance, one

may write

kX2 . 2Px (5.36)cr

where x cr is the position of the mass at the instant of release of the

force, P, and X is the maximum amplitude of oscillations (maximum dynamic

response). Moreover, P/k is a measure of the maximum :tatic displ -'ement,

(if P were applied quasi-statically). Then, Eq. (5.36) may be
max
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Fig. 5.3 Critical Load and Dynamic magnification Factor

versus Duration time \t or
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written as

xxst x

2 max cr - 1 cr (5.37)
x x

Next, = D is the dynamic magnification factor and Xcr/X =cr

stmax

Therefore, Eq. (5.37) becomes

2 crlD = 1 or
(5.38)

D
cr 2

Finally, the relation between to/T ( ,o/
217) and the magnification factor,

D, is obtained from the second of Eqs. (5.35), or

To/2TT -. = 2 I (5.39)0 T 2-' 2o-

from which

D = 2siT 2sin (5.40)

The dynamic magnification factor D, (see p. 94 of Ref. 36) is also

plotted on Fig. 5.3 and it is identical to that shown on Fig. 6-6 of

Ref. 36.

Note that the parameters plotted on Fig. 5.3 represent two different

points of view. The plot of p versus t /T depicts the amount of a sudden

load with finite duration to t at corresponds to a maximum amplitude X.

On the other hand, the plot of D versus t0/T shows the magnification of

the maximum amplitude (compared to the static one) due to sudden applica-
tion of the load with duration time, t . Note that in both cases, t

0 o

need not be larger than half the period of oscillation or t /T 2.
0
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Finally, before closing this section, one can see that the extreme

cases of t - and t - 0 are special cases of the finite duration case.0 0
t

From Fig. 5.3, one sees that as -2 -. - p - 1 which is in agreement

with Eq. (5.15). The other extreme case is obtained from Eqs. (5.34).

If to - 0, then gcr is an extremely small number and since 0 < s cr

then the second of Eqs. (5.34) becomes

-tcr d.2l 2 Icr d

T 0 =o cr 02)112 - O  ( cr 1/2 cr

Then

(ImP) cr = (PT0)cr = 2tcr - 2

which is identical to the result of Eq. (5.24).

Suddenly Loaded Beams

A large class of structural problems, that may be treated in a similar

manner as the mass-spring system, is that of Euler-Bernouilli beams. Under

static application of the loads, these configurations exhibit unique stable

equilibrium positions at each load level (see Fig. 1.5).

Consider, as an example, the cantilever shown on Fig. 5.4. The load

P(t) represents a sudden load with finite duration, in general.

If one assumes
z ,w

that the amplitude

of the beam, at any

point, is given by 9
the static deflec- El, L

tion curve multiplied

* by a time dependent Fig. 5.4 The Cantilever Beam

coeificient, y(t);
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7

then

wYx,t) =  yt) [ - (5.42)

Note that under static application of the load P, y is the maximum

(tip) deflection and it is related to the load by

pL3

Y M 3E (5.43)

The total potential for this case is

E L ( 2w2
U -- L II2 )dx -PW(L,t) (5.44)T 2 . 0  a~x

or

3EI 2
UT = Y - Py (5.45)2L3

Note that the stiffness, k, at the free end becomes k = 3EI/L 3 . With this

value for the stiffness, k, Eq. (5.45) is identical to Eq. (5.11) or

1 k2
UT ky - Py (5.46)

Moreover, the kinetic energy for the cantilever problem is

T rL 0. ( (5.47)2 j 0 a

where p is the linear mass density. Substitution of Eq. (5.42) into

Eq. (5.47) yields

T " ( ( 140/ (5.48)

which is similar to Eq. (5.12), provided that m - 33pL/140. Eq. (5.48)

indicates that for the assumed deflection curve, the continuous beam is

equivalent to a spring-mass system with k and m given by
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k = 3EI/L3  and m = 33pL/140 (5.49)

Moreover, the continuous beam is equivalent to a weightless beam

with a concentrated mass of m units at the end (see Example 1.5-3 of

p. 19 of Ref. 37).

On the basis of the above analogy, the results of the spring-mass

system are applicable to the cantilever. In summary, for a prescribed

maximum tip deflection, Y, the various critical conditions are given by

1/2
Imp lim (Pt) (k) Y

t-0ort0 
(5.49)

-1/2 Y" 0. 70714 EIP

L L2

Pdyn 2 3 (5.50)
cr 2L

Finally, for the case of suddenly applied loads of constant magnitude

and finite duration, the results of Fig. 5.3 are applicable provided that

the proper expression for p is used.

According to Eqs. (5.23), p may be defined as

P .2PL 3  Pp , 2P= - P (5.51)

~kY 3EIY P
dyncr

Note also that the magnification factor, D, in this case is the

maximum dynamic amplitude (Y) divided by the maximum static response.

The Imperfect Column

The imperfect column, under sudden application of an axial load,

typifies structural systems with static behavior shown on Fig. 1.1. Note

tit. such a system, when of perfect geometry, is subject to bifurcational
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buckling with stable post-buckling behavior (smooth buckling). On the

other hand, if there exists an initial geometric imperfection (small

initial curvature), the system exhibits a unique stable equilibrium

path. Moreover, this system has received the most attention, as far as

dynamic buckling is concerned when loaded axially either by sudden loads

or by time-dependent loads. Two complete reviews (with respect to their

date of publication) of this problem may be found in Refs. 38 and 39. As

mentioned in these references, the problem dates back to 1933 with the

pioneering work of Koning and Taub (Ref. 40), who considered a simply

supported, imperfect (half-sine wave) column subjected to an axial sudden

load of specified duration. In their analysis, they neglected the effects

of longitudinal inertia, and they showed that for loads higher than the

static (Euler load) the lateral deflection increases exponentially, while

the column is loaded, and after the release of the load, the column simply

oscillates freely with an amplitude equal to the maximum deflection. Many

investigations followed this work with several variations. Some included

inertia effects, others added effect of transverse shear, etc. The real

difficulty of the problem, though, lies in the fact that there was no

clear understanding by some inveatigators of the concept of dynamic

stability and the related criteria.

According to Ref. 39, definition of a dynamic buckling load is

possible only if there are initial small lateral imperfections in the

column. Instability stems then from the growth of these imperfections.

"Buckling occurs when the dynamic load reaches a critical value, associated

with a maximum acceptable deformation, the magnitude of which is defined

in most studies quite arbitrarily." There is some truth to this, primarily

. .. auc the elastic column does not exhibit limit point instability or any
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other violent type of buckling under static application of the load.

There is need for a cautioning remark to the above statement, though.

Analytically it has been shown (see Ref. 50) that, if a perfect column

is suddenly loaded in the axial direction, the fundamental state is one

of axial wave propagation (longitudinal oscillations). For some combina-

tion of the structural parameters, this state can become unstable and

transverse vibrations of increasing amplitude are possible. Therefore,

for this perfect column, there exists a possibility of parametric

resonance, which is one form of dynamic instability. In spite of this,

mostly all columns are geometrically imperfect and therefore, it is

reasonable to investigate the dynamic behavior of imperfect columns

including all variations of different effects as reported in Refs. 38-49.

These effects include: axial inertia, rotatory inertia, transverse shear,

and various loading mechanisms. Moreover, experimental results have been

generated to test the various theories and effects.

Finally, the criterion employed in Ref. 39, is the one developed by

Budiansky and Roth (Ref. 3), and it is applicable only to imperfection

sensitive structural systems, such as shallow arches, shallow spherical

caps, and axially-loaded, imperfect, cylindrical shells. The reason

that the application of the Budiansky-Roth criterion can possible yield

reasonable results for imperfect columns lies in the fact that the corres-

ponding perfect configuration (column) possesses a very flat post-buckling

branch. This means that the corresponding imperfect column can experience,

at some level of the sudden load or impulse, very large amplitude oscilla-

tions (change from small to large amplitude oscillations). Note that the

static curve for the imperfect column (static equilibrium), if the load

ib plotted versus the maximum lateral deflection, yields small values
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for the maximum deflection for small levels of the load. As the load

approaches the Euler load, the value of the corresponding maximum deflec-

tion increases rapidly. On the other hand, if the criterion were to be

applied to an imperfect flat plate, it is rather doubtful that reasonable,

or any, answers could be obtained. This is so because the slope of the

static postbuckling curve, for the perfect plate, is positive, and the

imperfect plate exhibits a continuous bending response with smoothly

increasing amplitude.

Next, the concept of dynamic stability, as developed in Ref. I and

discussed in Chapter 1, is applied to an imperfect column. Consider the

column shown on Fig. 5.5. The length of the column is L (distance between

supports), the bending and extensional stiffnesses are uniform, El and

EA, and the sudden load, P(t), is acting along the horizontal, x, direc-

tion. Let u be the horizontal displacement component and w-w the

vertical (transverse) displacement component. For the analysis presented

herein, the initial geometric imperfection, w9, is a half-sine wave, or

O(x) - w sin x (5.52)

0 L

The kinematic relations and the relations between the axial force,

P, and bending moment, M, on one hand and the reference axis strain, 0o

and change in curvature, x, on the other are

e " co + zx (5.53)

, o du + 1 ( ~h3x 2 x T " x

( wd 2 w) (5.54)(d 2__ .-
dx2 dx2

P " EA ° ; M* E1 (5.55)
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Moreover, the total potential, UT, expression for the system, is

given by (for detailssee Ch. 7 of Ref. 32)

jL[P 2 M*2
4." M + Pu(L) (5 56)UT " L2'D 2 II

Furthermore, the same nondimensionalization as in Ref. 32 is employed,

or

TtX WX •v) u(X);
= ()=p 'p

4U (5.57)
P M U T

p E PPE U T lPEEL

where

=A' P 2 P ; and 2 (5.58)

With these nondimensionalized parameters, one may write

= , 2 /o (5.59)

~~~~ (..- ) 1/ (+ 2 j (1

0)
M =o (5.60)

+ o J/2 p / -v(rr)0

V

E

where ( ) d

From Eq. (5.59), one may write

J,)2 no)21+ (5.62)

and
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3"' v dC - v (r) E 0 F ( dC + T (5.63)
00

Use of Eq. (5.63) yields the following expression for the total

potential,

2p- d. + fs 2 )d
UT= I 2 2 -"

0 0
(5.64)

iT L-2J L\ ]t+ ;r
0

Note that in obtaining Eqs. (5.62) and (5.64), use of in-plane static

equilibrium is made, or

pm=const =- (5.65)

For the dynamic case, this implies that the effect of in-plane inertia

is being neglected.

Next, let us consider the case of a suddenly loaded (by an axial

force) half-sine (imperfect) column. Then

w

w 0fi w sin rx o = -2 sin =e sin (5.66)
0 L o p

Let the response, f, be the form

= [A(,) + e] sin (5.67)

The implication here is that at time t - 0 a = e sin .

Use of Eqs. (5.66) and (5.67) into the expression for the total poten-

tial, Eq. (5.64), yields

UT""2p2 + A2 - j(A2 + 2eA) (5.68)
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A modified potential, UTmod , is introduced, such that, regardless

of the level of the applied load, the total potential is zero (modified)

when t - 0 or when A(O) - 0. From Eq. (5.68), it is clear that

UT o UT + 2 _2 -A 2 _ g(A2 +2eA) (5.69)

The modified total potential is shown graphically on Fig. 5.6 for

ff= 0 and i - specified value.

As in the case of mass-spring system (note the similarity), critical

dynamic conditions can be established, if the maximum allowable amplitude

is specified as X.

Only the case of a suddenly applied load of constant magnitude and

infinite duration is presented herein. From Fig. 5.6, it is clear that

Pcr (load for which the system will not exceed the maximum allowable

displacement, A(t) ! X) is given by

2ecr
w_ - x

X = .cr or Pcr X+ e (5.70)

On the other hand, the static load required, such that the maximum

static deflection does not exceed the value X, is

P Xe (5.71)

Note that the above expressions, Eqs. (5.70) and (5.71) hold for e @ 0.

d
The ratio, p , of cr to Tr is given by

d fcr X+e l+(e/X)
Per t X+2e 1+2(e/X) (5.72)

his result is shown graphically on Fig. 5.7.
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Fig. 5.5 The Imperfect Column

Note that, for very small values of e/X, the ratio p d, is close to 1.

For e/X equal to one, od - 2/3. Finally, as e/X becomes very large, then

d
p approaches the value of one-half.

Parenthesis

If load p is applied quasi-statically the maximum deflection, Ast ,
max

is

Ast O (5.73)
Atmax

If load 5 is applied suddenly the maximum amplitude, Ad , is given
max~by

Adma- 
(5.74)

max
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Fig. 5.6 Total Potential for a
Suddenly-Loaded Half-Sine

Co luxmn.
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iFig. 5.7 Ratio of Dynamic to Static

Load versus ratio of imperfection

parameter to maximum allowable

displacement (for the imperfect column).
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On the basis of the above, the dynamic magnification factor, for this

case, is

D - /Ast -2 (5.75)
max max

regardless of the value of e.
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APPENDIX A

FLOW CHART

(CYLINDRICAL SHELL ANALYSIS)

FM MGPZMI- 11USD

141



__LC____L C-rA O~~

cos

I5e.e -

PoTR~s FT$

soQuAMV~ 4 CS~t %,,% ;IVQ& I wu &

2.5 ) 6 %4%NONXP

1- . 0," ov

ee zi. 1.4 "dI- 6 j& 142t



41 42 4-3 4

NgGYSYMY YMY INVERT

GeerelmO4 1rx ore - G-us 4k

C A -7 OeefioPt SAC

-45 46

XWRITE XRGAO

D2Cv% di-Cct aol.cess "es W,+,

13our4o 9ST

*6 ~Or forr-ole 60ooApv,-5 E's, l ocft.*

% A% Eq COM)44~ I r - C;1!
0^8 3S 3. __ _ _ _ __ _ _ _ _ _

143



COMMNON CARD

1) Cov o,/7r-G/tlQLOT,tAj (60o)

rA) (500 -HI~eOACt1~r 6st

OeA%'%o v% 6o aw-&" coj^-aw\ &t4 it hk4(~~

',) CQMfoN/FI £EIt/6ELTrA A%.rA G AL-a4 T2,Q.A Z

C~"'t.~ ~t Jc.t,ce tvvrw. oc

4) Camot4/FroOtd' / YZ. Vt k 4 vi, k4?.l It V,3 tz c

GCOMMrO /ACTOt / C 3 2 -cz

COt4%CAf-.tVS W IJl 1.Vt ItPrs.J 4  6VI~lW"i WGCIA~

144



Oinct oxCcss dcw,J. set .I ?.Lo,&s.

9j CoMMO /r-ACT 3 /t1LS X L ) XH.

io) Cowrmow/pRG . / W rA (zoo, S),ETM (zoo0,S),WrP(2.;s~)

11) c~t~fAN/IP RES 2/W-4ZOO,)w ?(ZO5,Wr ZO

b ~ . -

13) coM-moN- XLOI/PZ

- .Er.dS 7Irts&e.

145



14) COMMO rNWPTZ/PS 2IN)XixV->

S4e 6occA cmelv' (atowl~e ~~a~w

XN)(X FPX - See- Ltseo& s o

%S)CovmoW s~rINN/VOUT (j3)VOT (7.130.

IG)CommoN/XXNNPP/XVPPI>XNY3

146



usE S M~ANUAL-

JjF~w -~pR Fa b.TA

W -QPOTe SAS L1)SP~if '..YO

At yjk%&~L&Cr.orvoL,. .v

IT IS OW8tE To IWCRGASE- VrLut KNO NW@POT fly

Note-~ LSzL 4dy sj SS72 fZ LS:~jrS3

L7 4frv c -C3 Ls -s4 c4,Li~ L,

147



Al1

T L lbDE o 4-WcW'J-e %

ELAS .- o .+. (U.J4 V. k- 4

XNI V-4,G~ .44)Sovj'Ai'CQ+41ijOT

MT (%1L+4 V J (J- % 148 )



A2

XLNM,YLAMO., C- PEO)CJ"0 
G E 1 4

XL9!fi 
/OxgrO

1.t %t, VV& ~ Wy% M .'kxtbv

&e+ A. *4I AAC 'vy jme:'v

VVZ ~ ~ I~ 97,)

Jvj 4.y.I tO-ZvrO 4 44

wzPP(Xj) W 0

149



:Etjxxo= .c~~ McA'

-rw~ Wxx as~c "6o W LPVFS)

Xl
rwrJ~L xxe -A hVJtW(0 1 )

C~tL -AO kr i)tx %At.L ye NJf

,Z~xgx4.J~ l W~o"" 'SkJN ItL.-TS

LNx P W (LVW~~ I XXt1 X0r y ttIK n,

4V* A EC6awJ.- 'I

150%%tJSl~ftC



CI

e siL i~ect qv e#&&. _e q u .*d 6

to~ soctv.

LIPWvO. leNriki %

~5~AVhC. + AO 4 ~ WWIo~ W(_P)-T?T) is

\~ ~-sips we SOeA. to 3O)*AL

AU& Losevt "vv%' %,4t

-~tL tL&AV1 -4% V AA%& coAW

clwie.( , k--vA d
4t, %, ,64 vvk,,'A

F%.C151WSC ,#- A



*Xt4P&h jXWP3.

DLWO m Z x e oC$Ab Ckw~yt.W. x41k

fry IDLWD-2 ) 4 -V,4 eAa w itow6

4xx 0O-.Am V (ros%'Vte Xwcx " Co4Is

hCCUR T~t e~veA 6ooI Q -WWYWj MA J&Vtge4

R~

+ DW(L -3 PT).

~~~~4, 1 wyt~ I jv~

4

152



btrxpw ps &t .o&x4) ts 44 so"

MWR'aeCSTO %A

(vw~'. 4 .G& l %'ueMv.

1:1 tt.O Ar +,0~i ta *AC "X O --I xw i

7lWOWZ (va"s) W 153T



N WN kec:wAv*. eyAIWv wit. v% w" eehj-

V4 N W J~YOCb IA jk&J@A A.JL)-e

COW -UO,.-. A& AON *i

IA~ YTYv-ov.*% Wx O

4~Ai X 2.kw-.Ai e 4 )X

37%~A 4k" wv)9#4 LWW t.JJ)e 0GAQ"4

-IA yloGe,-u "Mev

154Ae WWAW A&v0v,



6~

Ye s

S5EAtG.es

m Wf(1 :0 T NEA poT, I. A,kF0ue 4,L

xvm(

155



A64

LCONTN ~1O16

LCONTN ii ooa- lvD

LCrcr 0 F N-T N 0 Q

LCON N 0LCO N-TN

156



APPENDIX B

COMPUTER PROGRAM

(CYLINDRICAL SHELL ANALYS IS)

157



/JOB8
/NOSED0
NXRITCmL~u0j,TI 5Go.
USER.
FThv OPT zZ .
LGOINPUTtOUTPUTD F IL #PL=99999.
REPLACE 9 FI, .I
/EOR

PROGa4M t'AIN( ItFuT.OUTPUT,DFIL,TAPE5:INPU)T,TmPE6:CUTPUT,
ITAPe1bzlFlLT AP&O qTiPLt2±, T Pr22, TAPZZ3)

C POST 6LICK&ING OF STIFFE1 CYL IHOPICA. SHLL UNOE UNIFORMI AXIAL 3
C COMPSSZ (:3N iA THEOAYJ 4
C AN EXTE. !1O.- OF TOE~ PFOuk#.Ii FCR LOAD L-:V.L CVjW TliL LIMIT
C POINiT ri.4S t--Lff DO.E- ON1 fiC~r&P-!3R 1960 IN GEORGIA4 TECI' Ey
C SHEINr.Ai

COMt*?'4ieXLO.O /XFrmES 5
COMM0 Ot/2XZ(rG/,~q;PCTMI (5306 6
COr~r.N/90.:.DO/LS:, LSN 7
COM.X0N,/FIJF.i/0EITA,4L-.,-,At-. 6T2.GAZ 8
COMf'.CN/,F 0JRIR ,/KFOtR,XK 4,I3, KZ,K1 9

COMtwN1/FCrCA/C:tc2c3C,C5C6C7,caCv99,Cc:,C12 11

COMN/COISK/2.( 54 iI U 1-31)9IZ3 f5011 13
COMi'O/F..CT5/DL5,XL, XI 14
CO4NPLlw(.05 9ETm(lGC,5) ,4MPlC.-,5) 15
C0.4mor.,kESZ/WZ(-!.0jq53 9lZr16q 4Z0~ 51 16
COMNPESF( s)XKI;v3 FP(a 8 17
COmmIONNEwpr /JpS,IrjXAx
cammcdA/SHEIN(4/VCUT(12,.-2u),VP3T(7,L,30),IVOUT

COf1O-4/XENlPP/XNP. X0$F3
C0NFOCN/RVK;./*<!#PS

DIMENSION WWM(5).FF1(6) 18

DIMENS3IONWh i *XWFWF 2,5)FF(,8XFF(, i 20
OIMc SION~ AP(52,52P,BP(5e,52),CP(52,52),FR,(5Z,52),GF(52,1) 21
OIMjiNSION XP(52v.1)TI(t!),PCC(52),MT(5)V-(7..I 22

C 27G4.5295Z 23
OIMti4SI )h WCOfl(lC 5),FCUfft2C0c24

C ALL TiHE CARDS wlTH -SIGd * IN COLUNS 73979- DEPEND ON NUMBSER 25
C OF POINTS AND VFOUR 26

EQO I V.' LL.CN C(A PC 4 , t!) sV I(1) 27
CALL OPE W1S (11. IZ1'56 Ito ) 28
CALi6 0P;.NMS(22*I42,5Z::,01 29
CALL CPi'ItS(e3vIZ3,5U!,pO1

ECONV=C. uiu 3o
ECON=I:uJ

MAXN:5Z 31
MA X 2 HA Xft ,1&X N 32
NRHSz;. 33
NJ 2100 34
NW=5 35
NFx8 36

REWIINO -6
C NJ,NW,t4F - FO hIiSIOi -- IJzAXIlLW POINTS Iii AXIAL DIRECTION 3

C NW2 MXI1Ll KFaJR+. , NF= IIAXIMt' 2*KFOLPP. 9 M Xl=IZ*KFOU R +. 38
C tN ORDER TO I14CEISL TIE CAPAEILITY OF Tit- PROGRAM FUF MA~NY POINTS IN 39
C OIRECTIO.. - hlGmi." LIM1IT OF FOLRIER SCAIL.S Th. USr.Uk HAS rO CHANGE 40
C ALL ThE7 Cgw wiTH THE SIGN. *1 It, COLUMNt~S 73 AND 74. 41
1111 WRITQ;16#, 4.2

WRITE CE, o ) 44
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REAO0(5,* t'GCT KFOUsF LS I L SNtLPRINT9 LMO0.I11E T 4b
IF (Fi INT. LQ. :)LMOJ=l 47
READ (5 M- X.9 XO,LL AS, XN 19XIMPS 4a
RE ADO(5 IXL. A109YLAIC 9-XX PCYY 91HOI KH0Y 493

JPRZO
I VOUTz3

EXz-EXX 50
EY=-EYY 51

C 5
CALL CO.SFF(EK ,&.YXLAMC.YLAMO~1OX,Rki0YELAS) 53

C 54
WRITL(6, 3;U0rNqpo)I,,(FOUii,LslLSN 55
WRITc-EtJcR t~XLN,ASXNI,oc.f;EXP 56
WRITL(6,573)X(L;-t~3YL";EXXEY,)WOEWOY 57

C 56
CALL -IM'PLF 59

C **~60
WRITL(6, 50d) 61
00 35 I<=LgK. 62
LKzII(-1 63
WRITE :695iJWIK 64.
WRITL (69 "JO) 65
XXZJ 66
00 85 1;.,NE~jOT 67

XX=XX *DELTA 69
85 CONTINUEi ?c

IF (LPRINT.tE.1) GO TO 343 71
WRT 6 a DLAqt .9G L'9TG4 72
WRITL(65.r4i' .2Z,91,Q ',q.22 73
WRIT&.(Ev5I IO2C2,2ne0P 74.
WRITE.(6.503IJL.1,)L2,OL3,J).4OL5 75

3C04TINUE% 77
00 63 I1:±.fQtkPOT 7
00 64. jijqKl 7

WNP ~i~,:J .82

647 COtdTI~4L 63
DO 65 Jl=.,PKZ 64

XFN (Ii,j.j ~j. 66
FMP (Is. JlI J. 87

65 CONrIN4L 88
63 CONTI14UE 89

LP=0
INXXPX~i
RIEAC(5,' I ZtXXPLNXXPXJFRtLPRtRW
RW1:iOj.lRw
WRITE fo, ?CbJ fXX(P9LfJXXPXtRiIl

706 FORMAT (//91X 9'I~fX)PXX~ I,5,'% XXPX"qI' ZX,"TH4E INCACKENt OF
I W IS "v6~.L24,ixtEC.T"/I
REAC(5,* )OW9N~XkcN~tCUg~iXFXP 9
IRR=RII 91
IF( R. II ~F~zj 92
I0LK020LOO 93
ONX:OtiKx 9'.
XPRk.SzXPILL 95
XFNXsXflXX 9b

C WFNXAX;AL CCf1P~SStON, KfP~g~:HY00rOSTArIc P;*ssk;RE9 XAVX ITMERj XFNX 9
C OR XPRL.' ;-COP.OuJG TO 10040 96

GO TO(?l7Z1 /,73) 91OLEO
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71 WR I TE(69 5.1) XFFR3vXFNX )NY9AC CUP, L0G
XNX=XNXX 102.

XNI:XNXX 102

GO TU 7-* 103

72 wRIkL(6,52)YFr4Xv XPKE.SONXvACCUR 104.
XNXZXPRE. LOS
XN11=XFRES 106

GO To 74. 107
73 WRITLC,5.3)Xt4X ,XPiZESCMYACCLR% 106

1FtINXXP.--.h1GO TO 26.:
W R I T(6 0 3) tfNXXP,9IOLHD

263 FOFM, T (// ,ZX "TIE. OPT ION OF IN XFXP-"qI 59 EX,"&NO ZOLNO:"

STOP
202 COINTINUE

TLN0XXN' 109
XFNXTLM10x.xPkES 1

XNX=XPREL11

4 XN=!0 wL0XN 113

REAO(5,0 )"xNNLNNN,I6.NW 115

NWAVL=NNN 116

IF(1NXX3.t4.l)LtNN. 117

CA.L C0EFrQVN(NwAVE) 110
C IL.4 '~ 19

WRITL4e,535)n10NINOWNU4N, ItJON2,INONZ 120

IF(LF- INI.mr..) GO TO ..9 1,21

WRITL(69,i-6)C1,CZC3qC4qC5,c
6  122

WRITE (6,507K 7,C89C9tL1;0 t.;19,C12 123

49 CONTIriUE 124
ILR=C125

LICONz! 126

IPOTT=0 127

CALL S CO'3 (T V1I iza
WRITE (6,711 )T DO1 129

TIM2=T:Ml 13 J

TXP49=T 112 131

IINN~a 13Z

IF(INXX..j6AN.IO%$-E&-Z1 GO TO 213
GO TC 555

213 R ;AO(5t:.L0 (WM(I£-,J1),Il2,N~fP)T).J1=1K1I

RE;40(59 1') C C. 1F (1I: .Jt) .I 9,; 00OT I v JI zLK i)

GO TO 015
555 LN=1 133

I F (ICL NO. #f~ )XFNX=XtJ 134

IF (lOOE. 0FNX=TL MQX PIRE 3 lib

IOLT:IO~2fT 137

CAL. POT -- S (I01.3, NRD4S9 X NAP ,3P,CP 9 GP, PjkXP, CC9MT vTi,V It MAX2, 136

IF(LPikI41E. .f GC TO !01 140.
CALL SECONI CT ItijI 141

TIrI~sT t43-1" 142

r114:TL1i3 144,
WRITr(6,,,OAV-,XFN4XA:FS,Tl.. 14-j
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444 1 IDErz7Of)ET14
IF ( IOLND.EQ X~ FN )ZXISX 148
IF (1011U.EQc .0.O0flC.-.3 ) 1FRSxtIX 14 c
IF ( IDLNIi.L'Q. ) 150T4O*Pj S
IMAX=1 151
WMAX=L. 152
ITERzC 153
0O 1Ca K::,1z 154.

102 WMA x~tlr.)+WMt(t.JL) 155
DO IGs ri±:,tdE!)FOT 15b
whmzii. 157
DO 1" J7.Kl 158

I F(A BS(.;~A S (W.1j.X)J G C TO 10 3 164
WM A X =W 01 161
IMAX=11 162

103 CONTINUE 1b3
JWmNX:1 164.

A hw~wim(;.)166
IF(K1.f~ti) *,c TO ILJ51 167
00 105 J::=Z,~i 166
WWM (J1;. =mN(!AX J1 1 169
IF(AaS(dWWM(Jjl.LE.A5(AWWde)I GO TO IGS 170
AhoWrlzW*1 (J1) 171
JWMAX:Jl 172

105 CONTINUE 173
105. JF.4AX:1 17'-

FFM (1) 2F?' (IMA.99 if 175
AFFNFFt1 (o) 176
IF(K2.EQ.11 GC TO 33Z 177
00 166 J:z2pK&. 176
FFM CjZ I Fm (Ir4Xj 1 179
IF (AbS Fm~i(J )LE. AS (FF1) Ga T3 10)6 160
AFFIdZFFII 01) 181
JFM4X=JL 182

106 CONTItilr 183
333 LNzZ 184.

ITLR=1 TEkv~ 105
IF(ITER.LE. 10) GO TC 113 16
WRI TE (6, 114HI TER 187
GO TO 93i 183

113 CALL POTL RS ( u T, NPHS .MAX4,AP,PCP, GPFRX FCC94T 9T1,V I~t AX2, b
1ixpt,OETH, XFAIX,LNd,NtW,NF ,I),F) 1.90
IF(LP'kINT.N1E.i) Go TO i11 191
CALL SECouorI3) 192
TIM.1TIH3-T Alit- 193

WRITE(6, .ZITE,WAVE XF11X#PRES9TIN1 195
£11. CALL TRANLF(WF, KXFFFXFF,t~wNF,2,T1,D4&XK,1,L~It4TWWX#4?,LP) 19b6

00 115 J±1,1. 1.97
IF(WM(IY1Ax,J1.) M.3.) GO TO 5i 190
WCON(ITffR9JIIG 1.9.
GO TO 115 200

57 CONTIWUE 2611

115 C 0N T 1.14JC 203
WC zwC ONV( 1T Eit,J WMA X) 204.
IWMSJwt4Ax 2u 5
00 116 JI=1,'Z 206
IF (FM ( ImA ', j ) .tr.oG.) GC TO 5% 207
FCON(1TER,J:, :0. 2428
GO TO 11f, 209
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58 CONTINUE 1

116 CONTINLL 212
FCI4:FC0N(C .TER ,JFMAA) 21 3
IFH=JFMAX 214
IF(LPRINT.NE..) GO TO 1U7 215
WRITE 16,11811l TEKoWCH, F~m 21
WRITL(691 9)J,WCN(ITERJ)j1:1q~iI 217

117 IF( WCH. uT.;COf4V I GO TO 191 219
IF (FCH.Gi.-CO MlV) GO TO 1.9, 220
GO TO 155 221

19'. IF(ITF.k...) GO TO 196 222
IF( WC0K(ITL;,? :w1 .GT.wCOh(IT!-F-4,I~m)l GO TO 1,97 223
IF(FC0N(lirE~q -lFm) GT.FCJNQTEF-jjIF~l) GO TC 197 224
GO TO 196 225

197 IF (XNX 4E. 011 !)bO TO !96 226
WRI T. (69991 )X NX 227
GO TO ii 228

196 D0 1.~I J;.=It, 229
131 WW . ) iI:,I 9Xj 230

DO 132 J;.1,vZ 231
132 FF(F(gjXJ)232

GO TO 33i5 233
195 IF( IOLNO.EQ.i IXF~iX=Xt.X 234

IF(IOLO.Q...0Li.'I.O..JPRESzEIX 235
XFUOLtn.'i.. )XFN4X:TLMlCX4 >PRIS 236

IVOUT=IVOUT #1
CALL PCTSN(F3TPOTHSTRYSTRA ,i1.1.,FNX) 237
CALL SECONO I M3) 236
TIMN=TIM.l-Tim4 239
TIM2ST IMS- 246
T114=T 1M3 241
WRITE (6,z4.lxFN4x, )Fi~LS ,NlW.'V--, ITER, TI9m- 242
WRI r(94)O*CT*vTYSR 243

IF(LMOC.Hk.1) GO TO 476 2'.5
CAL.. TrtAH1SF 4WF, XWeFF, XFFNWNF,2,T1,MAXN,2 ,3,4WXNPLPJ 246

47P. CONT1IUC 2"?7
IF(tNDIN '4..4NO.LICON.t4E.10) GO TO 566 2166
IF.,.ICON 04.fl'. GU TO 6,-9 24'9
ILR~l 250
GO TO 777 251

629 XNxizxfix45
IINti~IZNtIJ* 253

VOUT (1.IVWT) :-XFNiK
VOLT If,.ZVO4TL'vXPRrS
VOLT (391 V OITlP CT
VOLT (4,IVOVT) ZPCTM
Vi;UT (5, ;Vc.UTI -S TR Y
VOLT (bIVtIT) :3TqA
vcuT (7 ,I V 0 O Ti.
VOLT(,!VOTI0.
IF(.F*E.lle O TC 731;,
VOLT (7, IVOC TO z:(,.P.P )
VOUT (99,VO~.Tl WM(LP,~l

VOLjT fb.IVC0TwI'(lSl40t,L)
VOLT (,1j~v,4Tl:hm0S4p;.,Vi
VOLT (*11,IV')LT)zlTER
VCUT (1, I VuLT ) zJwAVE

IF(It4wvfP.....4EO.LNXXPX~.1:IGO TO 615
IF(IV ;. AEO.LN~X X.XEQ- 2,AN4C, ZVfReEQ *LOGO TO 415

IF411r4N.LE.1AjiIGO TO 714 5'
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WRI TE( E,7) ?-- 255 
GO TO *i4i Zs

721 C ON T %U: 257
XNXZXNXiomx 258
IF(T~XN.Gr.X44X) GO TO 2.d.zS
DNXSD#4X/2* 26 a
XNXxXhiX-ONX 261
A ON -Ci~fI 3 XtX ' 6,
I It4tNz 14IN- 1 263
IF (AON~.GT. ACCUR) 6O TO i'44 264.
XNX:XNXI 265
GO TO &19 266

2'.' IFUINOO.Ea0.1) GO TO 555 267
REWIM ZO 266

3FMPcI.,J,),J'..K2h,1::,tErPCTI 272
GO TO '44 273

198 IF(LCOIE.1.O, GO TO 429 274.
ILeR:O 275
GO TO 777 276

429 IF(Lt4NN.EA.O GO TO 249 277
I POT T=I PCT 7+1 276
IF(iPO)TaG~T.1) GO TO 249 27i
POTT=PCT e
PXN 4Xei14-JNX 281

249 AON:-ON)*13../X,'4x 28Z
WPITr (6q,*5)lNh.AVjjXHX 2.3

TXNX=XNX 284.
xhNx z xtax-DjtX 265
IINN20 26
IF(A04.LL.ACCURI W~ T3 6.S 287
ONXZOt4E/2. 286
XNEXXX-ONX 289
IF(INNOM.M. 00 TO 5SS 29.1
RE'iIRO 2029

1I1:,-NEPOT) .((vWP(ILJZ.),Jj21,KI,1231,NIPOT),((F"(Z1,J2.) 293
2,j1,,2),Il1vNGOPCT) , I(XFM(I1.J,J:.lK2)±=,,EQ&OT), 294.
GO TO '.4. 296

619 IF (IULKC.EQ.. ) XFNX=XN X 297
IF(O..,%.j.EO.. .3-.IOLN!)L3.E.3)XPRESXNX 2 ve
IF (IDLNO.;'J.3 )$FH4XTLtOX4#)PRE 299

615 IF1IHXPaE'I.l)G0 TO 61.6
INXXPXXSNXXP
WW=0.
IF (LFR.U.L )GO TO 9-.4
LP'.FR
IF(jP~e.EQ.OIGO TO i..5

* t 0OTC Sob

IF(AE~i(mwl.4A.ABSIWM(LP.gJ±) )GO TO 9V7
WWU4(LFJl)

GOII~! TO 9416
q4 IF(JPoEQo )GOTO"

* JFSxJPF
D0 94-A., ~zi 9N iqPOT
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942 COhTINUL
GO TC 9.3

94.1 COtNTINuE
uo 921. li11,NEQFOT
00 921 jiz;.*K1
IF(At33(ww). 64.AdS(WM(ILJl) ))GO TO 921

LPI

921. COhTNUk
94.3 CONT I'UL

IF (LP.Gk.N4tpoT-1)L.PI4EOFOT-2
946 wu4wtl(LP,jF-s)

O~WWRWW
CALL t43NK;)(XF#',WW,OWhLP, INON2.9II3OET,I.JSMiA't4,APBF,CP,

I. OP,GP,PR,XP,CC,,iT.T:,,V1,D'AX2,NJtmANFLPIT,WF, XWF,FF,XFF,
2 £CONVLCQNNMgWAV -LMGOIRRINON2,INOW3)

GO To 999
ai6 C ON T'11 V&

C CALCULA~TION )F Cr.ITLCAL WdAVE NUMBERSo
566 WRITE(6,'-.) 30Z

IF(g.NNN.EQ.C) GO TO 9993 303
WRITE (6.584) 3G4.
ILR-:L J05
NWPI;INZNWAVQ job
NWAV-At114AVE.1 307
IF(L14NN.EQ.Z) POTT=POT 30
POTMIN=POTT S
NMINZNNIW 320
INWAVE= 3112
ISTCP=O 312
19=C 31.3
POT=PJTT 31',

77r rF(IaLNO.LO.i)XFNXSXNX 315
IF(IL2LNO.-2.e- .3..IOLNDAC.3JKP.REScXNX 316
IF( IL0E(J.3 )fFNX=TL"tCx.APPNES 32.7
IF(ILR.E..1) GO TO 776 318
WRITL (6, 5,2JI1UAVEXFR~tXPRES 319
GO TO 949 320

778 INWAV:=IN?4AVE +1 321.
IINN:Z 322
IF(LNRIN.EQ.Z) r-X4t4Xi 323
XNX:P!(,S 32'.
LICCI4-10 325

G~I*E0C O TO94~ 326

IF PO M.4.LE FOT)GO TO 1.3932
POT?'INzPOT,33
NMI NNsWA V. 331

NWAVtL fwAvL +1 332
GO TO 391 333

139 IF(gw4AVEsL-.INN.Jj) GO TO 549 334

GO TO 185 6

IF419.GT..) 60 TO 694. 338
NwAv--NdN-1 339
GO TO 39-,4(

(j41 IF(POETIV4.,LC. POT) CO TO 695 3'.1'
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N H I N..-' V C 343
N WA VENw.VL. 344
GO TO .s . 345

695 ISTO,:± 34b
GO TO 1&~5 347

391 CALL COLFNN (?tWAVE)34
CALL SELiUOO (T1M 2 349

165 WRITE (6,58Lfl4WPqINvPXfJXrOTqTIM2 350
IF(NWAVE.LE.Cl GO TO 9S9~9 351
IFlIST~et'.,) GJ TO 758 352
WRI rE(6,7B'3)XI1~,PCTHIN4U9MIN 353
GO TO 9999 354

798 IF(IN4AVE.GT.ILHMI GO TO 9999 355
GO TO 555 356

999 REAO(:594 I LL ONTH 357
WRITE (6, .l

1021 F6RlA7(U/9/Z,( "E SULTS FOP GONC.iX SIONS"//,2ZX,

13X, FtCNT R'93.FTNIAt ~4O*i T3L,. " , 5Y ,POV*9,X

104 FQK.T(,10.o

10 FOR11AT (////A6 4X36IIAIO FPTfTA# HRY//

1240 FR. T (9 1.4 363

500 FCRIAT (//016) ~ P.FCIO O1I AILO~CTO S/ 362
510 FCRMuT (6E/, 4 ,"r ) PRETO O IRUFE.T~ AE "1 363
320 FCRl;.T(//v,*W, YOF", CNT l1X"I iZq"F~K",18,"ZX" ,13X,"WZPP"OF 360
509 ORN CF PINTN6QP,.*qI 365

40G1 FCRMTf(,2)A,8,1z"E2.42N.2X=",'E2.42x,"n=292E.42X 374

50 Fl'fE 4 /,2X, 311"il2.4,E2X,"O2",E242xo24:".=El242X, 367

520 8 FCRA T U/ P4 x., P 1, Xt "L 4.W,1 X , 1 Z" , 2.x 9 z 91XPwZP/ 377
503 FCORPIT (I /,2KE ,L.6)24LLuE24,X~I 1.,X 378

511 FORMAT (// 92kt DE TA=FORz- v.' X, "ALSUR OF ,'F_2 *4 92X v");:? 12T4A1 AXIAL 372
1"LAZ =" E 12. S #4p Z" El 4PC~,ET OF," AXA L.AEiZ IS) ",4 383

VO I , "N PEI- .CCRC 49R~tT 2F eN '6Q;.2z LCAO2 IS 4"9112.Q2'l2o4 384
512 FCOR T U/ 9 2X, "a~ II -- o 12 . Z "1=9 L le OF ",L2 ',X v -242 9E IIA 13294O 385

50 FOT ( /2 x llo.ZU =S",E .4 9.!x, -O"TIIE 1N2~EN .4,2 X M o"DRSTTI i "EZo 9 378

2ESSUINE TEi .CCXACY Fj.CrI% TIhE ACCLJAAC LPfCAO IS "12*4iO.OTA 384

3 .41L~. ) 88
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SC6 FORMA T(/,2X, "C:=,Ei2 .4,2,C!,1.,X,',xZi, 390
1"4"E242t"S"EZ42 9"C6=",Ez.) .391

5(i7 FOkt.aT (/t:o- -*vL.vXsCz'E242,-9 E244X 392

743 FO PAT (//,. , -CAi;SC T1L*',E12.4, X,*S-_CONGS*/) 394
261 FORMAT (//92)(, ItLT1.,L SOLUTIcNti FRJM LIIOE&I. FOR J S,2,tX 395

Ji 7
-. *z, =z= 396

Ili* FORM-A(//2X," %0 OF TrI~S GASL SECAUSE ITER GrI.-7A1LR. THAN "t Ia) 399
112 F CRM14T (/,X, "3 C.JT ION FO IT .RA TI ON "q 18 ,Z X,"N=", IbZ 'N -

ZZ.---------------------------------------------402

991 FCR:'AT (1,.)f T4E SOLUTIONI IS NOT CONVERGD APAFENTLY THE INITIAL *
1LOAU JR-30LO 6~E i-ESS THAN,' -OE1.4)40

241 FORMbT (//.2X,-NOJLIfJEA;; SCLUTION FOR~ t=",ElZ.4,2x,"*P=",tE2.4,ZX, 6, 47
1N"03~/" CsT.UM&O 6iY *,78,2X,*'ITE PTIOU4S*/LcXP"TIMcE COMPUTATI *0 6

20N:,* E 12.4, ZX " ECNS"/X9"kkKOOOO60KVOCKKKw (KYK) C

242 FO1;M-T(//2Xq-P0T'NTI/L LNlG="E77 $~'.DFE OF POTETrIAL
I ENLRGYZ .E17.7/,ZX,"rNG S4ORIr41NG FO;, Y=0. jS ,1.
292X,'*;VfR4GE END SIAORTENINJG Is ",EL 7.7)

243 F C R1M .T (/ X, "D L T ININAT " 5 17-49,"IX PO' I13) ..13
785 FOR~MAT (1,X. "CRITICA, L AO F~- Nx E 2. 4, ZX. 9 414

I *P=',E1Z.4/ 2)(9 "POTENTIXAL ENRCGY=",E7. 7, 2xq6*1.oDIFILo OF POTENTXA6
2 ENLFGY=",EL7 .7/,2X,*Tt)3 EHORTLIING FOP Y=G*="tEI5. 5,
32XAV..;A .. ENO3 SHORT4NlC*,E15. 5/ , 2X,-KO KOKOKO(OKO(O KOK
40KO KCOO3KO KR K KOKOK JX)O~S<KK O KOOKOCK 0 KOKOk KO ..1O")o 7

119 FORMAT (5 (ISE15.S)) 448
545 FORM;AT (// /_-X, "OR Nz**. IS 9ZX"THIE LOr D -9E12.4q,XS OVER Thu% LIM '19

573 FOR~o.T (//,2X-"XLAMO:"*,E.L'.,,"YLAM:"*,E2',2X,"EX",j2.,ZX, 4.21

582 FORM1AT (/,,.X.'bA N". I0,ZX, **t(zEi2.4#ZX* "P=:',(I.4,CX,"THE SOLU e
lION IS ,4CT L j4VGR~GED/2X9"PFOA3LY T0E CRJTKAL LOAD IS SMALL-.R T *.2 4
2AN TN<SE LOfl V*) 4.25

789 F ORO T (/ / ,,X, "F Jiy :,E.4, X,"TNE MIflI)AUN POTENTIAL ENERGY IS 42E
I,E17.7,2x.'*AC TALj Cft1TIC.L WM VL hJMHBR :S "vId) 427

564 FO~wAT (//,2X9*'D~iTfQ-IrDATION nF TI-f CRITICAL CIRCUNFSRtWTIAL WAVL #2
1 NUc ( .*3*///1X 429*4

513 FCR'.AT (11.2X9 "T-4- ;EL..TlCt. ELTW.;4i ..XIL LJjAO .NO ThMi PRESSURcL IS4s
I NXZ",.EIZ.4.2V,**4LLTI?LY vY To-iE P .KSSUR"EUFi.4/2X, 4S3
Z"TI1L NC'1.LJT ;F T44L. PRELSURE IS",CE12.4u2X9 -e.3 4

561 FO1(A7(//q2E,"wV_-. NO 4#3J, 6~zC1.,.A
I-FOrLftT:.- £mERGyz2.E,7.d7v2X,o.LAFSEO TI-E=",vE.4,2x"SZCOw)SI *3 7

?22 FCRM(,,Z,"i OF 7N141 cAS: 98.CAL'SE Numbl.i OF LO~fiO PuINTS is 4.38

ENO . -440
SUB UTi; NuN,(P XIX%,WW.iW,LP.ItdONIOD(TN.lkMSIAXNAPBPP

ICPvCP,'_- ,PRv Efq,4CHT, TIV1,PA)(iNJNmNF&.AZI.T.wF,XwFFF,

COO:0.otIUT./gqEQPCT,M*I (50j,)

r M," to hFdF,1 4 j 4 ~ I
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CJpr I./x( fgIPr I xf,-! '. )( P

CIMENSION ,wM10 ,5 ,SE-TM(I.a 5) ,SWMP(£Ou,i
DIMENSIJN Sf$(£U,8l,SXFt(1J~qcISFMP(10Z~b)

0 1 c 1 .4 AF (M A X4M A Xf3P AY,A)MLP M A XJ4,AXN)

0I 11,L,4Si C'qii7~ (MAX14) *CC (AiAXN) , VI. (MAX(2)
0I'-I 4 K (M A XN)

01,.t sio 4 W: um(20,95),OFCUN(20 ,d),XCON ( 0)
WRITL (6-,,iOu) ;,X. xN, xxotRS,tPJPS9WM,0OWW

100 FOAMl1 T//,ZX." TH~E SOLUTlOM 1 ISWITCH~ TO EITHLR MXX OR P AS UNKNOW

IN I NST ::O OF w (LPJPS )"ItZX,9
2ACCCC.~~ ~ 1NXPX ?AhLT~f--(SLA. USERfS MttLIL/92X,

4"Txc !N!1r,.L PRLSSURE -GACz'*,E1Z.4/,2-x,
5"THE I7Z..'L GIV. N 0I3FL.;C~fIff.T AT ti1FI0ICNAL POINT LF-19X
6"ANO FOuRJCS iEiF41 JPS:".1.5/qZX,"S W=".,.1.. ,2X,"AN0 TrIE INC~rm.'

7NT CF W 13 uw=t!./2,N~-XPXP4XtXPXP4XOXNXN'
8NXXPNAPfxXXWXPtJXXPN)(NXXPXP4XXPXXPNiXXFNXXP"/J

CALL SCIONO(TI111)
I I NN= 0

1ASF=6

1IF ( IN XX F X. RI. )X NPX NX

I(IN Xyi <.H .4 t ZYPk

IFATH~i
IF(INCNjk3.fQ.2) IFATH=Z

IF (INCN.LA.Z )GO To 444
555 LN:1

IOET:I DOE; 3
CALL POTERS (IVET,NtMjS,t1AXN,AP.6FvC." ,GPj PR#P,CC,IiTvT£VI, AXi~o Lis
I~xptlipTM XXKLN fJNIj~wNF LP90p) 139~
CALL TR4ri F (4f-9 XWF,FF, YFviq~~ T19MAXvI,£LPRIN4TwwXNPvLP) 146

IF (iNxxF.xE.4)xPt~s=xWI
IF (1NXXPX.tJE.4.)XNXX=XtAP

444 IDcz.T=IOT 147
IF (IsSF.tjE. )GO TO Z14
DC 213 :i1=10AMPOT

21 Sz.TdUI',J.) 44T1j'.vIJ-')

00 2ii- J;.l,K2

22 S Ftp C I:. , J L) V M (IL J 1)

21 CONT INUL
XNN:XtIp

IM1A x z 151
W7A*Z. 152

I Tr.A =0153
00 .04 jl;.~ 154

102 W MA x =WH4.x .41 IJ1 155
00 103 I-.,z2WF(k0T 156

w MA J .15r

iDO 1rw J I .K 1 5

IF (b.;,(Joij, L Ab S W'.f A OJGC TO 0316
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wm A E~iv hm L
IMAXzI1 162

103 CC N TIN U; 163
IFtI'AX.Q.LP.ANO.IMAXNt:.NEQOTIIftAX=IMAX*i

JWMAXIl 164

AWI4MzWWH (1) 166
IF(KI(.EtJ.,) ' C TC 1051 16?l
00 10 j ~ 168

IF (AeS (idWi(J ) )*Lt. ASS (WW1)) GO TJ 105 1.70
AWWM~40M(Jl l 171
Jm~xjL 172

105 CONTINUE 173
1051 JFMA.X~l17

FFPN(l) ff(IMAXv U 175
AFFt1=FFt (.) 176
IF(KZ.'EQ,.I GO TO 333 177
DO 106 J-12,9K2 2.76
FFMt (J. ) F11 ( IMAi ,J1) 179

IF (A8S FF1l(J1)).E.A63 (AFFM)) GO TO 106 160
AFFN.zFFH ( Jii 181
JFMAYji I12

106 CONTINUE 163
333 LN=Z 184

IF(ITER.LE.14) GOj TO 11.3 166
WRITE(69 1!4.11 TER 187
GO TO 4G-'- 18

114 FOR?(iAT(//,2X,"EtIO OF THIS CASE(t'4XXP;) SECAMS ITEiR GREATER
ITHAN "tI81

113 CALL FOTr-S(IU.T,NRSMAXAP8P.CP.GPPRtXSCC,4TT1,V1,MAX2. 109
1IXP,4,0ErM,Xt-4XX,LNI4JNW.t4FLPO) 190
CAL.L TRt (FXFFFWtFZT;v'AN1LRNWX(,P 196
IF(IIP.EQ.4l.XPRES=XNP
IF (INXXFX~.I4. )XXNP

00 115 J.=o; 19?
IF~vM(IMA ,J;.).S.3.l GO TO 57 196

GO TO 1.- 200
5? CON~TINUE 201

WCOh(IT6TK#JJ =A'iS(WM(IMM),Ji)-WWM(J1))/WMt(IHAXJ1II 202
£15 CONTINUE ZUs

WCrl=WCON( ITER,JWllAX) 20'4
IWM:JWMAX 205

00 1 ji~~i<Z20E

* IIFCFR(ItIAf.jiJIE.0.1 Gi TO 5,6 207
FCJN(ITAR.JU =C. 208
GO TO 114E 0

58 Cc.OrN T ViUE 1

£16 C 0NTLr 1U 212
FCmzFCON( ZTLR,JFg1AX) 213
IFN=FA 21

I F( L F kIN T . .. 1) GO To 117 215
WRIT (916.) ITEM WCi49FCH*WW*XNP,XCO (ITP
WRIT" 6 119) (J., WtON( ITL~sJ4:) ,jl1t.)
WRITL(,i, (J,.FCO?4( TLP,4;.),JI1*KZ)

J17 !r(F 2( T3, t, ) IT.E .~ctn)C, TO 1'1A
IF(wL4. -.EC4NVl GO TO 194 21%)
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IFFr.T..4'GO TO L94. 220
GO TO 19'5 22

194. IF(IrER.LL.41 GC To 44a 222
IF(XZ^ON(IIE.R).GT.XCOW(ITER-111GO io 1IJ7

IF(CN(TC9 wl-TW04 T -. P GO TO .97 223
IF (FCJN( , F to) G.FCN( I TE-,IF Hl) Oc TO L-3 224
GO TO 196 225

197 WtTL (6 -j3')LP.JS WWtxxqFK~SqXNP
WRITE (69,,j 1) H, F1, TE, IASiFvCWW, 0OWW

IE 15 .5 Z<,-ff. ="k5. 5,ZX, "XMPz".L15.5/1

993 FOR~1.T ( 18.1E 15.5)
IASP~lrSF+I
oowwooD.w/2.

ww:Snc d
IF(lASF.v-T.4.ICO TO 404..
Do 2 1b ;. ,N L ;OT
00 217 J;Z1..

217 WI,~:rF f~.

28 FM(il,J.SFrl1,I~J:)

Z16 COA.TINUE
XNF=S'XNP
GO TO 1444

196 xN: iXj)
.00 l5. J -!, 1 229

131 WW 4tlJ.1 ZMA, j1) 230
DO 132 231

132 FFij.)zF,:AX,jII 23Z
GO TO 3z33 233

195 IVCU'T:.JJ07.CALL PCTSN(fOT,Pv.HSYS~ 49,1,LgXNXX)27
CALL SeCOI1J (T ill-) 2.58

T IMI=T r!-

WRIT. (E, E4.; I? OT9P0TmS TRY jbTRA 2.
IF(I0.T.t;.ij WRIT .(E92.3)0OETM9IX(FM 244
IF(iLMJO.i..I G- TO 47b 24
CALL TRA t)i, P9( wFFF 9XFF NW 9,UF,929,T 1,AXN 92 3 9 W9 XNPvLP) 4

476 VCLT (i 9, V0UT) :XNly4
VCLT I.: , : V~UTi) zYPiij S
VCuT (39 .VOJT) I PCT

VCUT (5,.'VUTJSTRY
VOLT (6,. 1 VOU T ) -: TR
VOLT (7 1 -VOV T I zw r (~., .
VOLT Ip, I VOUT) zwM dLP Z)
NSHR=(t4CON T+i) /Z
VOLT (a 9,VOL'T I =WM (NA.JH(

V .T . Jj: M4 4V
241 Fk eT X MON LL I .F~ SO LU TI C4 F Lr% W 9 1 9 1 TI:'
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20E BY" 15-5/, 9 2".NS NE,"I~ ~~tUd ~ t

4PN NNX X XP P -MN XX X PP FN-J14NXX X PPF"I/ , e-X,A NN14X YX F PPh, )JX X X Pe%'fi4f4UX XA Pj4X XFN
5PPNNNXxxi&PP*@4X )(PPOX(PPNXP~iNXP~i~4XIP'/

242 FORiMAT (//92g ,"POTETi4L EiftiRGY2",E 7-79 LX 9"riuuIFIEO OF POT,.NT1AL
IENERGY:,E. 7. 71/,.X,":'NC S-O).TE.14NG FJik Yz&. =" Z7.7,x

243 FOL%,14 (1/ , X, "O--TJ*:INAT="qjI.'o4, 2X,[XiI:",Ilfi
IIN:IIIN.i
G0 70 (231,2329 233), IFA TH

231 IF XNP..;T.xttSbGO TO 2.34
I F A 74=2
GO 10 2j7

234 IF(XN~l.tT.xN"31.)GO TO 237
WRlTt(6v261)XN?,XNPi

261 FORMA~T(//,Z2X,"END OF ThIS CASE bECAUSE XMiP2*,EI2.4,,ZX,
1**ON T~hli r 1m.T ;.Th '- GikiAT-'i' THAN XNPI=",rr:2.4/)

GO TO '. 3
232 IF(lN.LE.NP)GO TO 237

IFATOH'S
GO TC Z.57

233 IF(XN?.LT.)tP-4)GO TO -:3 7
WRITE(b.Z22XNP,XNtP3

262 FcF1.~T(//qzxq**ENo OF T14.: CASE c3LCAU3S2 XNF9El2.'4,ZXv
VOON T14E T9190 PAT%~ IS GiE;TEk THAN XMKF3",EIZ.4/)

GC TO 405,
237 XNPS=YNP

IF(INJN2.NE.2.0.II'IN.NL.IRR-5)G3 TO .321
WRITE :*o32Z- II"U,XiQP

322 FCRAAT (//, "XINH=zIE,2),"XNP=,E5.71

WR!Tc(- ~3Z 3) ( CW4 Il ;.-J ) ! ,I,lE LAPOT I, J.i ziK

W 9ITE (.a 932 --) ( (XF ( - j ) 91; .N 'PT)pJ; -9Z

,323 FORMA T 5Ejb6. 8)
321 COtT I.iUL

IF(I:NNd..E.lFR)GO TO 721
WRITE (6 7 :Z) IINN
GO TO - i

722 FORM..TC//,2X,"'ENO OF TiIS CASE BECAUSE THt. NUMEER OF DISPLACE-ME
LENT PJIT~i IS CR,-'.TE& THA~N 11,Ie)

721 wkw4+0D.ww

IF(II4OfJ.QA)GO TO 555
WM(LPtJFSlzww

GO TO 441
403 CONT!,,UC

RE TURN
ENG

SUB3ROuT:NE IMFE?;F
COCIN /FOUR Jj IKFOURko #K49 ,1(,2 Al
COMmC,i/CINT.G/NE(JP0T,MI (30C)
COMMON.IFACT,f)L5x., xm
COMr*O:.IjFIFR/DELTA,4.. GAI,AL4,1tr2,G.A2
COO.N/r.S2/ wZ ULLG,5) ,WZP(1o~j,5) ,wzPPt;.a0, 5
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"I =p 1/ Xt.
A2=2.*Ai

xxZC.

WZ (II) =-Ci* COS (Aa 4 XX)
WZI(I .2)=A CZ IN (Al"XX I

wzP (I --L) =AC .*.AZ~s IN t'AZ~x

WZP(:v.J:AC-L*AZ&A2.COS lA2* XX)

WZPP (!,? z-AC2#At#A1'SIA (AlXX)

IF(K.'.LE.IZ)G3 TO 50

*.ZLI,JP (;.

WZPF(i.jL=D.

50 C CT:.
XX = X X + Of L. -,

RE T V RA 68

EN 46.9

COMtC..,i/$V /N(QPOTPIIAFM.[C6 -;;,)-7

COlON /F Gj. In,/I FOUR 9K 6 K KK3,KZ K147

CO0-OI/NEW FTi/JPS , IN x xPX '1

D !M-- NS r W F'( RMW I, X WF (IiF,NO F F (NR tFJ XF(F OF F)T I(mAXN) '77

IF(IPRrK.EJ.) GJ Ti Z7 4.18

00 lu Ii=:,MEtoPOT 4.7S

CALL iRA'iS(22.TL,flL.I1I 481

IF(I1.NL.I) GL iJ 175 482~

00 11 Jl.,l4

WFj .,J.0=rlc J.i 484

X W F (IvJ.):T 1( J I+K3 -1) 4.86

ETM (1I. , i =Ti ( C.JK+(b-. '087

11. CCNJTINdi& #ad
0O 12 JZ.=L,,' 489

FF(,JI)2T±(J:'+l) 4.90
FM~l ,J-)=T (J;.Kl+E:)491.

XFF (I Ji) T -(JlK.) 492

XFM (Il. 9 J-) =T-' (J 1j+K+K61 4.93

12 CONTINUE 4.91

GO TO 11 495

175 00 ..Z J'*,1.'96
WM(I±,Jl) :T (j') 497

ETM(I±,J.i)=T± (I+K.3-1n 498

13 CONTIN4UE -099

00 14. Jl:...K: 500

XFM(Ii#J:)=TI (J:.1(4) i0 2

14 CONTINUE 50.3

IF(I±.NCA.PJEPOT) GO TO 10 504.

00 15 J-=L,xJ. 5w,5

XWF (29Ji) -I'.( jl+K3iK6-lJ 50 7

DO It X 509
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16 CONTINUE 51210 CON T g1(g~ 513IF (LPF-f. 0cJR. NXXPX.LQ. 1) G TO 176
XNS=WtULPt JP S)
WMl ILP ,jP3) --WW

176 CONlTINUE~
IF(IOER.fNE.,l GO TO 275 514
NE Q PNEaPOTr-1 515
00 20 It=z-,NEQP 516
00 2. ji,'IK 517
UPIP (1±,j:-) AL 1'WM (ji-. J±3 .GAj.'W1( i ,J1) 51&

21 CONTINUL51
D0 22 J:,252 QFilP (li ,J;) zAL .'&Fli III- -,Ji) +GA1'F?1(I1.±,J±) 52122 CONTINUE 522

20 CONTIRUC 523
00 23 JiK 524

WMP ;.t ;.)=ALI14F lqJ,) GAI-W~m(29Jil525
WHP(EGPTJ.=.L*W-(EQPJ;.)GAIWF(ZJl)526

23 CO'4T1:mE 5Z700 o'. Jl±.*KZ 526
Fhl(±Jln L:.lF 7(1p, *CA-.*FM (ZVJ±I 529

FMP(EQPTJIZ..I*F~t4()PJl)+AIOF(ZjlI530
24 CONT~r4Ub 5 31275 I F (IPRR. ME Rt TU R-N 5S2

278 C ON T IIL 533
ji~o 534
WRITL(6,4.,G)Jl 535
WRITL (6, 5. ) 536
XXZL, 537

540XX =XX tDELTA 5 4±
46 CONTIt 1 Uf 542

WR Ti (6eb 0JJ PC 91),XWF(2,±.) 543
00 49' J±=:,KFOIUR 544
wR I T (6,4C 0)iJ 1 545
WRI TL (6p5 . ) 546

D0 51 Il=,EGP0T :%
549
550

51 c o:4r I.iUL 351WRITL67JOWF''J1+J,XWF(ZJ4Z),FF(ZJl),XFF(ZJ±) 55249 CONTINLE 553
00 52 J =!,; 554
WRITL.(694..CIJA 555

W~fT*( ,S:')557
00 5! i.-.,NfQP2lT 556
WRITL(f6,7);gV(1±,J)FlP(11,J±, tXFS(I1*J;. 55953 CONTIiIM 560
WRITL(6,dJ)FF(,J;,J9FF(2.J±) 5b1

52 CONTINL: 562
400 FORMAT(,2,zrMo~ RSLLTS FOR KFU*,S2,*4****** 563

5b6
S04 569

b00 FORIMT W/LH F14;TIv rOINT t15otvl5XP-j±5.6/h)
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609 FOR.'4r (t 1.M. 571
700 FOr0'AT (//"J- t::C 7 1V- PQI HT E.5 h 915~ X So 572
800 FORM, r (//o5ri c IC T j V P OINT w573

tot i.a 5Ul .6//) 574.
7L(d F0WATT, 57X stL5.6) 575

R ET f%. i-' 516
END 577
SU8RL;#T.IN& i-3T3(POT,PCrMq Sr TR TA qi~ IP Sv. ISA,XNXX 1263

C POT - F)TEN1TLAL EOi)RGY 1264.
C STRY - U;JI TEND SHORTENIN.G FOR~ Yz0 * 1265
C STRA - .V-k-Gc UN~IT c.IND Sk(ORTENiNG 1266
C IP~1 FOR CLCUL;4Ir POT 1267
C ISY~i FOF C-LCULATE STRY 1268
C ISA~i rO; C-L,;JL4lz STRA 1.269

COMMX/3 .uNOV/LiiLSt4 7
COMJN/-C-,'C/9R.009Hu.9 H2,H22v.211, li62,O22,0119Oi29022 127 1

C OM U/F I 2T OR /C., C 2 .C3 , C 4, C5, C 6,C7 , C8,9 CI9C C L11±C 12 1275
C : : , /C 2.0U9O C 90A29O ,0 90. 34 XN Iv EXP 1276
cC9 4M X. FA :T 31/A5. X t 4 1277
C 1M 01NTU/ EPT9M:( 1275~

C 0.4 P'O; /XL OA IXPR 12aa
C 0Ml 0% / HE I NN /VOU~ (12, 3 30, VP07 ( 1 1 1i) IVOUT
CIMENSION. PE (7h9PEt ;

CE1:CIC/Ci. 1281
CE2:C94*2/2. 1282
CE3=CU( (.-xr.~I)4fxxp) 1253
CE-#Ci'PD'U-. -XNI) 12o'4
P07:0. 1285

CO 553 IN.1,7
553 FEE (IN4 C .

STRYQ * 12836
STRA=6. L 287

00 i.0 I1=1,r4EQPOT 1268
E 7 1289

IF-;l~i (!Il..ORi) .IO./AR4POT)Elz0.5+A*- 1291

00 11 J- =o90iU 1293
JS:J1942 1294
EZ:JSSWm(tJr.I)4 (Wt1(IlJ141.)+2.'4Z(I1,J±.+1))+--.2 1295

11 CO 1,u 12 %j6
El I. zLI+ CE 11 6 2. 1297

I~:.~)GO TJIJ 1298

Prc:(3)=fOLlOE TM (Ti,.) *42

PZ (5) =-2.WEP*M (111, W1) g)+2*Z 19))*A*.EM

PE(7I:Oba/01:...2#Q;-.eaA-IaXNXXw4XMXX
PL (6~) =%,

100 El 1iDAZ/0ii *QjA.3E T (I~.,±I1
IF(ISY.NE.:) u.j TO 1.0 1J
PSYZE. 1.304~

110 IF(tS..N:..± GO TC 12(U 1305

120 IF ( ISY .NE~. G TO 130 1307
EJ= . 1306
DO aJ.1V 1309
'0 J:=:90 Ilia
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4-p (I I.Jd + *Wl (I .I- .31.
18 C0N T INU~ 1312

PSY=FzSYEj/2. 1.31S
E*O.- 131'.

E 2 =0. 1315
00 12 JlI:.,KFOUR 1316

JSv:lloo. 1317
EL=ETNU:,-'J1*1) *E 1316
E2=EZJS~swfl(i ,Ji*1 1319

12 CONT114UE 1320
PSY=PSY$1JA3 4*1- DI4C96E2 1321
E1=0- 132
E2=3o 1323
00 13 J1 = ItKZ 1324
J5ZJ1*42 1325
EiE.x~1f1 JL? 13Z6
E2=E2+JS'FM(.1. JI) 1327

13 CONrTMUE 132 e
PSY:PYJA2# .- OAVaC5*EE 1329
STRY=STRY4PSY4 7 £330

1.30 IF(ISAMEt4.1J GO TC 140 1331
EI1D. 1332
DU 14 JI=19KFOUR 1333

14 L1M(Lj.1~AM(J11*.Zf1.~*J 334.
PSA=PSA-EI/4. 1335
STRA=STW;.+FSA'*E7 1336

140o IFU1P.NE.0 G6 ro 10 1337
EI=Q.133f

E2=0. 1339
E3:0Q. 13*0

E420. 1341
E5=0. 1342
00 15 J!=19WOUR). 134.3
JSxJi#42 134'4
JS2=JS4#2 1345

E2 E1,J12*wm 1347
E3zE3JS*wMP( 11 ,j +.) 134ea
E4=E4IETM(Ij, J1+z)*# 1349
E5=E5+JSWM(J.,1)#ETM(I1,Jl~1I 1350

15 COtITIIJUE 1351
PL(S1=FE(.)) +CE210OL5*ZCEc.'.L*1/Z.-ClO0L2'E5
P~f4)FE (4) XNXX*E1/2.

El G * 153
E2=C. 1354
C32C * 1355
E4=4. 1356
00 16 J4II,iK 135?

JS2 :JS*f2 135S
'1'jS24FM (I ItJi )*'PZ+El 1360
E2xE2+Ji-MP(1!9.j11P2 1361
E3=EJfXVI (11. JI .2 136Z

16 C0NTINUtk 1364
PC (2 ):Ci2eOAIEL+CES*Ei*DB2*E3/2. -OAZ'C9'E4e

143 P(E(INAZI97NA+E(t~dE

10 CONTIN4UE L367
IF(IP.NE.1) GO TC 15a 136w
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PEES=J
IF(LS-'..T .4..4i.O.LS1.N~L.' )GO TO 253
PECS:-O0.36.2831854RR'XtX%*WMPU, 1)

253 IF(LSN..'T.4.ANL).LSNl.t4E.IGO TO 254.
P'.ES:PtESD'L3*6.263.5.-iRR4XX~wflP('.uPCT .1)

25'. Pr.LU3)=fEE(.i)+PLS
POT=FOT.PLE S
PCTmzPOrm+PEES
00 1'.5 INA=1,7

150 IF1ISY.N'E.1) Go TC 1b3) 137a
STRY=JA14XINXX-STFRY/XL*0ELTA 1,371

160 IF(IS;-..E.l) GO TC 170 1372
STRA=BA1AXMXX -STR.A/X6.* LTA 1.373

170 CONTLWiE 1374.
RETULRN 1375
END 1376

SUSROUTIN:. A C(0,(I~M1CF,iF,AF,GFPt4RHSXNKXXLNNJNWNFLP.0F) 578
COMMON/0IlNTG/NEGPOT,Mlt(,.JC) 579
COMii0MONSUrO/ LS1, LSN 583
C00:U.,iF)FRJ:X.TA1,AL:,(f-AlAL2,3T2,GA2 581 I
COMP.ON/MEdPr/JPS, It.XXPx

COMMON/F0U)RIR/KFOUR,K6 ,K4,k314Z,1(1 562
OIM-I:NSIGN AF(,N1J~l.FI'1,MlI,CF(Ml,m1I,GF(ldRS)DF(Mi,) 583

C NEQPOT=rIPMNf (E-XC..jOl.vu FILTIVLS Pk)I NTSI 584
C LI -K.t-iC OF -- UNCIRY CONUITION$ OF POlk.T 1 56 5
C LSN -K:Nl OF IbOJNOARY CONDITIONS OF POINT NP 566
C NW - t A XLiU M K(i FU9 0Ift .J1S:f4 WM~(NJ,NWI 587
C NF - MoI I~UM 2'* FCR CIP'E4SION Fil(NJ,tF) 56

IFuIEa.Gr.;.J GO TO 10 56i
CAL-. RSTG(ItF,CF,4F,,1Fo,XXX,t1,t4JIJWW4FLNI4RHS,LPDF) 590
00 2 li:I.K6 59!.
GF(1*KI6,NR1NS1:GF (I1,NAHS) 592

00 2 JI~1.K6 In 593
BF(I1+K6,J1):AL2BtF(I1,JI ),ALICF(I1,J1)59

BF(I1,j*.+i6)GA'BF(IJ)GA.'CF(I11,J1) 596
2 CONTINHiE 597

CALL a0UNJ)R(.,FCFGF1,N~XLS1,H1,NJNWNF,LNiNRMS.0F 598
00 3 i1=.,PK6 599
00 3 J121i6 6UQ

BF(IJ~).~&L~F(IJ13601
A~fIl+K2,9Jl):-F(l1,Jl+(6) 602
SF(I1,JL*K6)zCi (1,J2J 603
AFIl~ =UA*FI.Z,J.) 604.

3 CONTINUE~ 605
RE TLUF 606

10 IF(IEQ.GT.2) GO TO 20 607
CALL RSTG(..F, CFiFGF.2.XNXXMI.NJ,NWNFLNNRHSLP.OF) 608
00 4 1119K6 609
00 4. JL21,(6 6LQ
BF(11,UIjt3=F( 1,Jl).83T2*AF(I1,Jl) 611
CF ([1,JI.Kt5 3 L2~'AF (11 ,Jl +.ALICFC Ii lj) 61.9
AF ( 11J1.) GA24AF(IIJI)+GAi4eCF(1,9JI) 613
CF(Iltl1JC. 62.'

4. CONT 11UE 615

20 1 F E. GE. ':QFO T- 1) GO TO 3 1

00 5 zL:,,cu62
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UC~ 62L
BF(IlJI):uF(11,Jl).BTi*AF(I1,J13 622
TENiP=GAZ*;F (I .,illb .GA;*CF (t11JL) 623
CFC1,JI.AFrI,jliA..CF(li,Jl) 624
AF(1,J;.)TLMF 625

5 CONTINiUE 626
IF (LF.EL. J. CR. IN XXPX .1-. IRETURN
IF(IE'J.LTI.L P- .CF .I C. GT * LP.I)kETURN
EWWWMCL P.J PS)
IF(IEf).AE.LP-2.)GO TO 51

GF(Ilo,RN)=GF(I1,NRHSI-AF(l1,jpS)*Ww

RE TUFN

51 IFIE~.E.LF)GO TO 52

54 B3F(I1,JPS):OF (11,1)
RETURN

52 DO 55 1.219K6

55 CF (!itJPS I=DF (I11,11
RETLRN 627

30 IF(I O.EQ.NEQPOT) GO TO 4J 626
JPzIEO 629
CALL RSTG LAF, CF,83F,GF ,JeIXNXXtNJ ,Nb'NFLNIRJISLP,0O 630
00 6 Il=1@K6 631
00 6 J1:l,K6 6.32

TEMPzGA2*AF (I 2.Ji) *GA.1CF (Zi.J1J 63'.
CF(I1.J1):AL2*AF(I±,J1),..L*-CF(lIJ1) 635

AF(IlqJi+eKb)2U. 637
6 CONTINUE 636

RE T L r 639
40 J P =I t.Q 640

CALL RSTGAW, CF 3F9GF,9JP9XNXX tN1,lN, NF vLft4R~S*L POF I 641
00 7 I1=1,Kb 642
GF (I I + 6,ilk HS I =GF (I. vN RH4S 64.3

00 7 J12LK6 644
BF(I2,Jl)=BFCIliJ1) BT2*oF(I1,JII 64.5

7 CONTINU.. 648
C ALL 0 OUNOR MF AF 0 GF 9J PoXNX X 9LSN M1 9NJ Nw N FvLN9 HRH StOF 164*
00 6 Ili~ 650
TEMP=G F(I1-', NR)dS) 651
TEMPP:0F(Ii,i)

GF (I~.,qNRI451 =G F ( I1K6 9NRHS J 652
GF(Iz.+K691WRNS )=TFMP 653

OF(Il+K6vl1 TEtIF?
0068 J1=1,(b 654
UFIIIK6G,JL.KEh=GA±*CF(I1,Jl) 655

* CF(I+969JIjsAL.4CF(II10i) 656
* CF(I1,J1.)=BF(I1.i(6,Jl) 657

OF(I1.K6*j1)xAF (119Jl) 656
S CONTINUE 659

RETURN 660
END 861
FUNCTION k$.8( I..I.LiiaJPNZN3N4.LLI 662

r~ N4=1i FOR 6i(JPI+J) OR 8(JPI-Ji 663
C h~'.2 FOR i(.jPqj 1 664
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C LL=L FCR A4 :2 FOik F 665
COnt'CN/F- Ci~ 1R /KFOUR 9K6 .K's K(39 K(29K1 666
OIMENSIiOK 3 (120(3) 667
IF(L.LGT.31 GO TO 10 668
111* 669
12=11 670
GO TO 20 6711

10 111IABS(I-J) 672
r2=11 673

20 IF(N'..EQ.,) GO TO 120 674.
I2=i 675

GO TO IGOJ 676
120 IF(I1.LE.I(FOUP) GO TO 100 677

ALabO. 678
RET.RI 679

100 IF(L.LE-D GO TO 110 68L
ETA 1 * 68L
IF(I.EQ.j) IET;4=0. b62

110 GO TO(1.,s.2,13,14,15,16iL 683

GO TO 17 b665
12 R1=JI*2 686

GO TO 17 b8 7
13 R12Z.*IL*J 668

GO TO 17 6b9
14. R=(t .-ET-4) I i**Z 690

GO TO 17 691
15 Rl-(&.-ETA)*J**2 692

GO TO 17 693
16 IF(I-J.LT.0D .- 1Az-1. 694.

R1-~.tTA~ 12.695
17 IF(LL.EJ.1)12=12+1 696

AL8=RiftUJP,I Z) 697

ENO 699
SUBROUTINk RSTG (R.S,T,G,JF,XNXX.MioNJ,NW,NF LN,NrHSLPtOE) 7G0

C L NZ FCR LZNLAR LNm2 FCR NCNLINEAR 701
C NJ MAXIMUM POINTS IN MERICIONAL DIRECTION 702
c. NW MAXIIUM KFOL'R+1 NF- M4AXIMUMJ 2.'l(FC~iJ 703
C XNXA AXiA . COMPRESSION LO.ZO JP- TML POINT 1N IERIDIONAL DIRECT 734'

COMON/FIjRIR/FOUR6I(,I(,FK2K1 705
COIO ,011,O19I9H.912911129Q2t~lD2,02-2 706
CO~ON/FCTCCC,C3,C.t,CSC6,C7,C,CXCOC11,C1Z 707
CON1'ON/,T2L1OL*?,2CLOL.,OA,A2,AOA1.,0d2oB3O81.,XNIEXXP 688

COMPCt./XXLO,XFRE!S 710
COtMOh/t~4-7,/jFS9INXXFX71

UIMENSIJN OE(91)
C INXXPX:. FO NXAX AP40 P AS IrNOWNS
C INXXPX= FO' %wX AS UNKINCwt. To-E INITIAL SOLUTION IS NXX=D.
C INXXPx:,Z .3* A-z 2 3UT THE iNITIAL SOLijTION IS A 'GIViI, MXX
C INXXPXZ4 Fo- P~ AS UNKNOWN
C K6in6OKFJL~kZ 71.3
C KC'ui.*iF0UR+Z 71'.
C Ir3*3*KFOUk+Z71

C K~zZXFOUR715
C K12ZKFOUR 716

C C9z(NNN16f)**z Fla
C C12co*41 719
C CZZ*0*.*' 120
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C C4=0 Dori 2ZCY 9 722
C C5=QW~lwl*C9 723
C C6SI./0;kf#O2l*C, 7?14
C C7=C9p**/(~.li 725
C C8=2z~Cq#*Z 726
C CIOzCi/2. 72?
C Cll-2.*lC3#9I2 726
C cizzezC02 729

RCOR1:O..2 /4 kr% qui
RCOk2=Cg*0.2/ii.

0O 1 I1jz~q6 730

G(IltRHS =G 733

00 CONT =.K 736
J1-O 737

00 2 119(3,K6 734

2 CONTI4LA: 7362

00 2C(7I 72,73T'.INXXF

IFCLN.LQ:)41 TO44

(qK4NR.S)GA (,RsIDtXX'. TCJ,5

1 T CL, %3) =T C. K 3) XtNXX

GO C 75

72 Oi (, 9; )= WZ;:P P JP , ) -RC3RI

IF(LPI.E.J6 rOCT 75

G(IPPJRHS) C (lt4ftH4S)XNXX*.TM(JPLI)

GO TC 75

TIFJ1z (LW.Vi GOTjL,.C5wp(PnC6eZJn) C 55

GfI1, 4J1:T(.'vNJ4SC±L'IX*LTMJPM 75
GO TC755

74 TI 93)F ( . 9KO11+NXX.'1G TO .
GIFJP. 2-NE.L.O.JFS.J.)+ TOR 9',

75 00 6 I),%OU zt 49

ISSJ#*2178



94 IF (iN J.... o j 758
Tr(I s34J)r =T (I Y+J)-C5/2.*1 S4001(JF, M) +C10 *IS* Fm(P, j) 759

1 *CIIXFtl( JP "j) 761
S (I IJ+ V1)(l J. -C5* ;S*W,'P JP9 P) +2s*ClISF1P(jPqj) 762
T (I 9K'4*JI T (;I. K4J) +C.G4IS4WM (JF,4) 763

I-C6/ w I(JP. R9 *I'*Iscw(WpM()Px,) XJPqj I .LrH(JP,"1 767
ZFM (JP. J) _1. *WMP (JP),r1) FMPIJPj3) 7686 CONTINUE 769C EQULL6o I&W4 L J.AT I )NS Foi I= i~,,,,,,KFOUR 770
DO 3 I1i2'U 771

I~I1-i772
IS= 104 773
ISZ:IS442 774

T(I1,I.3):-C5*,3cWZ(JP,Il1 776
T (I I, I!) =C41 ~S I 778

T ICI, 1sk,-Z (JF,I 7 8
T 1,1+KO ' TC (7b,?7,?S 7b779

T6 (I, I +K-.) zC3I1,-+K/x) *73

R (I 1 I~I 11 +F,- oRCURZ*1SN

EGI C IS8A31 91)

I(LQ 1GO TO 8*7),JJX?

76 T (11 11K_-1 T (Ilt IK3-1) +XNXX

GO TC 831

I F(L NiEQ. 1) GO To0 931

GOLNt )..OC ~ xP .L.31 O C

* ~ ~ 7 r(I-TrI1K)(Ivs+KwMX(XI1

1.IF(LN.Q.J,O TO 8o 71
D (Ili-')T =OE( it C'I~~ 1 CEMJP, Il)+ 786I*H(PO

T(I3JITI.PK3)-C5IS1(jPIl 78

788

622C712.11s 790
E32E2*W"l (J0 ,i 3.1 791G (I I#NRMS1 0 c i1,N3R) -CSIS*ErMc pojJ1upg(JP9I 1 j 7921 -Cc&IS~wi (JD, i[W;1(JPqII) 793

60 00 4~ JzlISFCUR F94.
JSZ.J*#2 795
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1FILN.fO..I..iC.IN(XX.EC.1)GO TO 4.
IF 4N.E2Q.- ..N.JP.NE.Lr) GC TO 4

IF(LN.EQ.. A1.3.JPS.*E.MIIGC TO 4

G(I1,NRMSG( I1,NRS)+E/.JSWM(JP,h)2*#ZE--JSWM(Jpte1) 801

4. COt4TINLL 803
00 5 J=1,K2 804

T1AL~,4jlzrJLPN#JN CI*W,1,1)qwFJftqI 806

T(!1.K1.J)2T( ,911J+CiL*AL(IJ~WZPP,JPNjWW,1,1)+ G0T
I AL3(IJ,5,bdZPPJPNJNtWE,±,ZJI dO6
S(I1,Ki.J)=Sc:19K;4J).C!a'(ALd(I.J.3,wzPJPNJ,NW,1.1)* 809

1 AL3(;sJq69,WZP9JPvlJJ9PNv1)D 810
IFiLN.L-Q.2. oR.1NXFXP.LQ.1)GG O OTia
IF(JP.NE.LP)GC TO A07
IF(JFS.NE,.I.J4+L)GO TO 108
T (I194J=T I., ,K4*.J.CIOAL3 (IJ 91WMtJP q,4JqNWq Loll

Ica IF(JF3.f)E.:A35(I-J) 'iiG, TO 107

107 IFtLr4.EQ..) GO TO 5 811l
T(IlK'.J)=TU:,.K4,J).a0(AL§(IJ,:,WMJPNJNW,1,1J, 812

1 ALttIJ,4,,MJP*JqNwd,..jJ) 813

I ALB(1vJv ,ET 11,JWJNW91q,41) 615
S(II:,.J)S(4,11*IJ)C.(AL.8J3W1PjPNJNW,11), 616

1 ALE) (I ,J9-,,wr*JP,l4J9NW.±.1)) 817
G(,94lz=(1,MICoP(,a(,o,~J,~N991 818

21,1) .AL8UA,J,5,jTM,JPNJ!JW,,))#FM(JPJ). (AIUS(IJ,3.WMPJPot4J, 620
3 Nh4,±.,l) Atd(I,J,6,vwmpjptJ,iWt,))#FNF(JPJ)I 821
XJ1-.I*J 82Z
IF(IJ1.G7.KFOURtl CO TO '12 823

T(I',l.IJ:T (I1.Ij(3.JI C1"(LI .jv,,FM,J~.jtjF,2.2J 825

S (I:1IJ1'.)=S (:I ,IJI1)*C;0ALB(I9J 93FP9JP9NJvFv2ZE 826
60 IJ2=1f-aSU-J) 82?

IF(!J2.GT.Kf0URI GO TO 5 826
T(1,I4Z+i)=r (i 1,IJ2.1I+C.0O;...(IJ,4,XFM,JP~t4J,tJFZ,2) 629
T(I1,K(3IJ2)=T( 1113I2+I'A81,ophJgit~22 630
S(i±,IJ2+.J=S (I1.1J2.1).C:0'OALS(IJ ,6,FMP,JFN4J,m,2,2)I ai1

5 COmiTISQiE 832
3 CON T INJU 833

C COMPb&TIetITY El)UTICNS FORi 1=9,99,0 8346
E12C.*u/.. 835
122K1.1 836
13=IZ2q(2-A 837
00 7 1:-2PI3 838

1211-KI639
IS= 1*42 64.0

IF(I*GT.)(F36Rl GO TO 82 84'.
845

652
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1 1 9 W t;' s JP,NJ,9Nv in 1 1 )) 655
IF (L N. -,a. . U'.NXXPX.EQ.1GO TO J.0955

IF(JP.NE.LP)1;O TO IC9
IF(JPS.NE.I + j I GO I C J;.

111 IF(JPSJ .1N ,A0S(1-J)~i)G0 TO 112

112 IJ3=I+J
IF(Ij3.GT.IXF0U6VGO TC 113
IF (JPS.NL.J+,)GO TO i13
T i.X'J ~(1K.J)E~L (I vJt, fWM,.JPvNJvNW,2v1

IZ13 IJ3=IAE-5 U-J)
IF(IJS.GT.Kt'OUR)GO TC iC9
IF(JPS..J1I)GC TO 1019

109 IF(LfJ.EQ... r.0 70 9 856

1 ALb(1qJ,4,WM,JP,MJ,W,.,J))5

S (Ili.)521 J .J-f* AL(I J,S W&\,JPNJ NW19) + 661
1 ALe U ,J,6,%fp.Jpqfh.,r14w,iI)) 662

~ 863

J3JPtNJtN~w.'9) I*.1 EJPJ~.(,-6(J 3 .WMPJP?JNW,1,1I*AL(I,J,69 d66
4WMPJPWJINvvi, 1,) )*W,'i(JPJ±)) 867
IJIZIJ 066
IF(IJL.G T.I(FOLRI CO %TQ 869
TfIi,1+-)=:7(I:,IJ±L+:)-E1(flEBU,J,1ET,JrtJNW,1)) 67C

83 IJZ=I~aS(i-J) 873
IF(IJ'2.GT.KFOUR) CO TO i 7

T(11,K3*IJZ)zT( .,kZ4-EIAL3IJ3(,5,WM,JFNJpihs,2,.I 876

9 CONTINUE 878
7 CONTItiUE 879

RE TLPW' 66G
END 881
SUdRMuIN. EkLiN DR H~S, 9r,SG,. Ifiv XAXXv LS,'1 1,NJ t4W,IIFLNv,N4RS YOE) 882

COP~/ U - KO.,; K,1(3 K,hA o6.35)88

~ 887
sad

COMMON/lIE Wa PT /J PS , 1NX XPX

C 8OUNCA Y*C.NJ:TIQrS d: eZ .6T,6Z ai 69 1

C LSx1 FOR SA Amv:Nxy--xu. 693
C LS3Z FOR SSZ w XHxVuz . 9

C LSz4 FOR S;'. Wz,1-:v=U-:. 895
C LS25 FOR C N:WX=NXYZ,,X~o. .6
C LSX6 FOR c..2 WZW,XZNXYZU=,. 047
C LS27 FOrE CC3 wzwqxsV:Nx=a. 896

C L Sal)C IE4O 900
C LSx.gu FiR AtLTkY Nxyc:kx:z x zuic. .401
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C LS=I. FO fLi4 fp C.T;Y OX=MXIW:,V:0. 9io2
C OALFAz(i.*XL. "1qi 90Y3tC-A1
C 3G4
C OL2OO016-xN .L Ex'fYYLk MCXLA" 02./(W*24ALFAI J 905
C OL3=LWXLAMV#.YLAo)/-LFA 90b
C 0L43-xNj.4(EXL.t1J/.'LFA 901
C OAl=(l.+YL1j)/OA..FA*_XXF) jaI
C OA 2-XI/ o- A E X 0
C DA3=- (I. YLW14J) EgXLf.C/CALFA 310
C 9A=N#Yv~m/_~ 1
C 03 2z 41. * YL A '2) / (GAU A 4 E X XP) 1)12
C OB3=XNj4EX(L M / ALFA 913
C 064=- 11. XL/-mO) rY*YLA'D0/OAi.FA 1
C '(6zo*FQUN'2 915
C g(4=4*KFOgkR1 '316
C K3z3*kF)UR+2 91l
C KZ2kFOUR 43±8
C e(1:KFG4A-#L 919

RC=±.

C CORRZ.CT. ;o. liO GA TcCSi
IF (LS.EQ.i)LZ13 '320
Do 5. I±:1.Kro 921

00 1J1=±,K6 923
SS(I.J~. 0 *32'.

ST (IJ:) ~ * 25
I. CONTI;NLE 926

IF(LS.EQ.iJI L3 TO 866 927
IF(LS.GT41& O TG IUC 928
00 2 I±ilI't 9jz 9

2STC11,11)zi. 930
IF(LS.LE.4.Oik.L.S*GT.6) GO TO 4.06 931

088 J=Q 932
00 . I1:kS,K4 933

3 aSIiJ=i.935
100 IF(i.S.GT.-d GO TO r04 336

ST (K3,K3) -.. 1 37
IF IINXXF(.EQ.1.O.I*Nxxijx-c.Q.4)GO TOl77
0E(K.3,1):-C8oT#gCi
8G (KJ. 91)zi
GO TO 7S

.78 C0KNTU~aE

K~lzK3+i939

ST ( 11,v11) VUL 9."
13T ( 1!A44K31 OL4 941
IF(LS.EQ.l.0K.LS.EQ.3) GO TO 4 942
ZI1~lK314

4 CON.TINCZ94
200 IF(LS.NE.-L) GO TO 3OC 946

EisiL4/owl* 947
13S (2.,K3) =[LI- OL4/0;.*Oi± 948
DO 5 JJ=±.KFOUR 949

JSsZJ1' 450

1 ,N.- 'i . TO 5 951*
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PT I-i) 'I J *.)+E!#S#W P (!o J~lf956
8G (I NFMlS) bG ilHH)E.J*ml~~~)WPI*l 957

5 CONTI4iE 958
00 12 Iiz2,K. 959
1=11-I. 960
SS (11, ll+K3-i )z6S(l,,lKS-1) OLI 961

D0 12 Ji~l.K2 963

1 ALBU 9J.9.5,WZP ~INPJoWt it ) 1 65
12 COHTtI#4E 4966

300 IF(LS.WE.9) GO TO 400 967

BT (19K3) :QLJ-E-. 969
SS (3,KJ) =DI-'-: 1970

E1=CL4/ LDIL*RRJ -371
8 T (1, i) -E 9J72

I~r)(J.Q'.RI;)P(EI4G TO 87

IF(INXX-"X.EQ. 3 eS(K3,1 :=XNXX- I
IF(LN-EA&.1) GO TO 63
ai(K3,1p=XNXX-fl

0G(K3,1)=+*J G3, 1wrDp(r.,I)

GO TO 48
87 ~~2iXX-

b3G(.,WRAS) z(O..,.4*ODM2/D11)*XMX*RC.
88 CON~TINUE

El=04/)l*C;.975
00 6 J1:,(F0UX~ -J76
JSZJS#*'> 977

ST =13~J.ji:T d(J1 E)I*JS*WZP( Njl1.1 399
8S(10, JI40 :6$(K3,j1l+. )+EV6JS4EZfIN,J;.+1I 98C
IF(LNJ.C&.i) GO TO 6 981
ST(9I. 5 (i Jl+.-) E±.#JS~wiM( 7*,J1.:1 982
8G (:,URMS 6&U tKf3) +L.JVtIN1+,a983
8T(K3,Jl.1) BT(K3,j1)+E.SaM9(Ir,j1,1) 9614

BG (9, M*I$) =$G(D(39MRfS).E:'.Js*VfM(INtJ41) WMP UNtJl*1) 986
6 CONT INUE 98 7

IclIi-i S89

990

8 S( I.+K3-. 9L! 4- 1)OL4q 994
8 S( : 1 Jc3-LL +K3- 1) 0L 195

IFI)X)-d2O-;XPtL-~r TO 47

SG (II1.K3-1,!g4S)z.X(NXAEWZP(INI.) 19?
GO TO I.;

9? 8S(j1,I~-,I)=-IS4C9(PL22.OO*(1.-XNI

IF (LV. E. ) CO -To 13

13 COt4TINtJE ~q 8
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00 7 11zZ, 13 1jaz

IS=I -K 100.3

GO TO C21,ZEt 23v ,Z,19,?6v27 Z89 21930 ,LS L0o5

21 BS(I ,K1!11. 1006

GO TO 7 1336
22 BS(1,qK-1)z1. 1009

00 6 Jiz1.K1 LULL
Jzj1-1 10.2

8 CONTIt'L) 1615

GO TO 7 1019

23 BT(I1,KL+.Uzi. L2

1F(I.,T.k,7)Ug) GO TO 7 1..22

GO TO 7 162.6

as (I11.14 ,K4 +I) 082 1328
00 .9 Jiz=.,K1. 1029
J=J11 1330

I ALa3(1qJ,4,WZv149,NJN9,i91 1,132
9 CONTINLE. 1633

IF(L.kxT.(O:UR) G0 TU 1 10.34

BS(11.14,K3.I )=M~3 10.36

GO TO 7 1036

IF(I.GT.KiOLJR) GO) TO 7 1J.
63 ( I1149Y%(. IzC 10..2
GO TO 7 104.3

a T (11e14.I'<4.!I= G:3aZI4
IF(I.GT.KFOUKI GO TO 7 1A
BT ( 11I4lV 5+1 1=00 10A.7
GO TO 7 1u..o

28 ST ( 1, 1i) =-IS 4C94'*M2 1

IF(I.GT.KF0URt Ao TO 7 13,3

8S(I1j~IAfK3*i )z3f3 11355
GO TO 7 1656

30 SS(IIVK.*:i :.* 1057

00 14 Ji.:,KFCUR 1j3
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AO-AL14 735 GEORGIA INST OF TECH. ATLANTA F/6 20/11
DYNAMIC STABILITY OF STRUCTURES. APPLICATION TO FRAMES, CYL INOR--ETC(U)
FEB 82 6 J SIMITSES, I SHEINMAN F33615-79-C-3221

UNCLASSIFIED AFWAL-TR-81-3155 NL
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11111 *30

1.8

IIJI1 5 11111 1.611

MICROCOPY RESOLUTION TEST CHART

NATIONAL HIIR[AU (IF TANDARD 1961 A



7 c (-t T .I. 1I6'
666 R E TUh; 1065

ENO 6
SU8iiOUT1NE COFF(f~,LYXLAMYLD4ORNCX,khOY,ELASI 1377

COPIP9O; ~T VOLS, OLZ qqL),DL4,P)A1.DOA 2DA39 DA 4s PZ 108 3*049 Jr1E xxP 1379
COz~.4P0w.INTG/:4EQPf:T PMI(5oa0 1 3U
C0O4ON/F IFR/0OELTA ALLGAI ,ALZ 9dTZ9 GA2 3
COMt O.4/FCURRP/'FOt.rv~bIK,K4.Z,I
CONmO/,..T 3/OLSELJC4 L383

K6=tKF06+Z 364.
K~m4KF-.4+Z1365
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